gauche.configure
- ビルド用ファイルの生成 ¶このモジュールはconfigureスクリプトを書くためのユーティリティライブラリです。 configureスクリプトはシステムの属性をチェックして、 ビルド用のファイル(通常はmakefile)をテンプレートから生成します。
主な目的は、Gauche拡張パッケージにおいて、autoconfが生成する configureシェルスクリプトを置き換えることです。
autoconfを使う利点は、生成されるスクリプトが最小限のシェル機能と基本的なunixコマンドにしか 依存しないため、ほとんど何も入れないunix上でも実行できることです。 けれども、Gauche拡張パッケージをビルドする時には、 既にGaucheはインストールされているわけですから、これを使わない手はありません。
configureスクリプトがGaucheで直接書ければ、配布前に configureスクリプトを生成するという余分な手間が省けます。 configureスクリプト自体をリポジトリにチェックインしておけますし、 誰でもソースツリーをチェックアウトしたら(autoconfを使わずに)すぐに configureを実行できます。
ただ、今のところgauche.configure
はautoconfの機能の小さなサブセット
しかカバーしないので、複雑な機能テストが必要ならautoconfに戻らなければ
ならない場合もあります。必要に応じて機能テストを足して行く予定です。
gauche.configure
のコアとなる機能は、テンプレート(例: Makefile.in)
から、@VAR@
のように書かれたパラメータを置換して
ファイル(例: Makefile)を生成することです。
autoconf用に書いたMakefile.inはそのまま流用できるはずです。
autoconfのAC_*
マクロに対応する機能は、プレフィクスをcf-
に置き換えた
名前で提供されています。
• configureスクリプトの構成とビルドファイル: | ||
• Configure API: |
configureスクリプトは、それを実行しているシステムの特性を調べて 置換パラメータの値を決定し、ビルドファイルのテンプレート中の置換パラメータを 値に書き換えてビルドファイルを生成します。
通常、テンプレートファイルにはサフィックス.in
がつけられ、
対応する出力ファイルはそのサフィックスが除かれたものになります。
例えばMakefile.in
はMakefile
を生成するテンプレートです。
テンプレートファイル中には@PARAMETER_NAME@
という形式の
置換パラメータを含めることができます。以下は典型的なMakefileのテンプレートです。
GAUCHE_PACKAGE = "@GAUCHE_PACKAGE@" SOEXT = @SOEXT@ LOCAL_PATHS = "@LOCAL_PATHS@" foo.$(SOEXT): $(foo_SRCS) $(GAUCHE_PACKAGE) compile \ --local=$(LOCAL_PATHS) --verbose foo $(foo_SRCS)
configure
がこのテンプレートを処理する際に、@GAUCHE_PACKAGE@
、
@SOEXT@
、@LOCAL_PATHS@
はそれぞれ適切な値に
置換されます。autoconfを知っている読者には馴染み深い動作でしょう。
Gaucheのconfigureスクリプトはautoconfのconfigure.in
と
似たような構造をとりますが、フルセットのSchemeの力を使うことができます。
次は最小のconfigureスクリプトです:
#!/usr/bin/env gosh (use gauche.configure) (cf-init-gauche-extension) (cf-output-default)
このスクリプトはいくつかの共通タスクを行います。
cf-init-gauche-extension
の仕事は以下のとおりです。
--prefix
のようなconfigure標準の引数および、
--with-local=PATH:PATH:...
が認識されます。後者は
PATH/include
とPATH/lib
をそれぞれヘッダとライブラリサーチパスに
追加するものです。cf-arg-with
やcf-arg-enable
を
cf-init-gauche-extension
に使うことで、処理する引数を追加できます。
package.scm
が読み込まれます。
パッケージの名前とバージョンはそこから取られます。
依存関係のチェックも行われます。
@prefix@
などの標準の置換パラメータのデフォルト値が設定されます。
cf-output-default
は次の処理を行います。
VERSION
ファイルに書き出します。
Makefile.in
を処理してMakefile
を書き出します。
もしconfigヘッダファイル(通常config.h
)がcf-config-headers
により
指定されていたなら、入力(通常config.h.in
)を処理してヘッダファイルを
生成します。
一般的に、configure
スクリプトは以下のようなパーツから構成されます:
--with-PACKAGE
や--enable-FEATURE
で
処理すべきオプションを、それぞれcf-with-arg
とcf-enable-arg
で
宣言します。
cf-init
かcf-init-gauche-extension
を呼ぶと、
グローバルなコンテキストが設定され、
configure
に与えられた引数がパーズされます。また、
package.scmが存在していれば、そこからパッケージメタ情報が読み込まれます。
cf-output
かcf-output-default
を呼び出し、
テンプレートファイルを処理します。
多くのcf-*
APIは、autoconfのAC_*
もしくはAS_*
マクロに
対応しています。引数の宣言がcf-init
より前になされなければならないのは、
1パスでcf-init
がカスタム引数の説明を含んだヘルプメッセージを
生成する必要があるからです。
{gauche.configure
}
これはいくつかの定形のcf-*
呼び出しをひとつにまとめた便利関数です。
configureスクリプト中で1回だけ呼び出される必要があります。
この関数はまずcf-arg-with
関数で--with-local
コマンドライン引数の
処理を登録し、次にcf-init
を引数なしで呼んで初期化し、
さらに以下の置換パラメータをセットします:
GOSH
gosh
へのパス
GAUCHE_CONFIG
gauche-config
へのパス
GAUCHE_PACKAGE
gauche-package
へのパス
GAUCHE_INSTALL
gauche-install
へのパス
GAUCHE_CESCONV
gauche-cesconv
へのパス
GAUCHE_PKGINCDIR
gauche-config --pkgincdir
の結果
GAUCHE_PKGLIBDIR
gauche-config --pkglibdir
の結果
GAUCHE_PKGARCHDIR
gauche-config --pkgarchdir
の結果
--with-local
コマンドライン引数はコロン区切りのパス名をパラメータとして
取ります。その値は置換パラメータLOCAL_PATHS
にセットされます。
デフォルトのMakefile.in
テンプレートを使っていれば、その値は
gauche-package
の--local
引数に渡され、
C拡張コードがコンパイル・リンクされる際のヘッダファイル、ライブラリオブジェクトが
それぞれ指定されたパス以下のinclude
、lib
サブディレクトリから探されます。
例えば拡張モジュールがfooライブラリに依存していて、あなたがそれを
/opt/foo
以下にインストールしていたとしましょう(つまり、
ヘッダファイルが/opt/foo/include
に、ライブラリオブジェクトが
/opt/foo/lib
にあります)。その場合、
拡張モジュールをconfigureする際に--with-local=/opt/foo
を渡せばうまくいきます。
デフォルトで行われるこれら余分な動作が邪魔な場合は、
この関数を使わずに個々のcf-*
関数を呼び出すこともできます。
下のcf-init
も参照してください。
{gauche.configure
}
configureシステムを初期化します。autoconfのAC_INIT
に対応します。
これはconfigureスクリプト中で、
全ての機能テスト手続きに先立って必ず1回呼ばれなければなりません。
(cf-init-gauche-extension
を呼んだ場合、その中からcf-init
が
呼ばれています。)
まずこの手続きは、configureスクリプトと同じディレクトリにpackage.scmという
ファイルがあるかどうか調べ、あればGaucheパッケージ記述をそこから読み込みます。
パッケージ記述には、パッケージ名、バージョン、依存関係などがかかれています。
詳しくはgauche.package
- パッケージメタ情報を参照してください。
次にこの手続きはコマンドライン引数をパーズし、configureの環境を設定し、 (もしpackage.scmが依存関係を定義していれば)必要なパッケージが 既にあるかどうかもチェックします。
省略可能引数は以前のバージョンとの互換性のためのものです。package.scmが
無い場合、少なくともpackage-nameとpackage-versionを与える
必要があります。これらは置換パラメータのPACKAGE_NAME
とPACKAGE_VERSION
を置換するのに使われます。他の引数maintainer-emailと
homepage-urlはPACKAGE_BUGREPORT
とPACKAGE_URL
に
使われます。これらの引数はautoconfのAC_INIT
マクロと互換です。
推奨される呼び出し方法は、package.scmを用意し、cf-init
には
引数を渡さないことです。そうすれば、パッケージのメタ情報を一ヶ所(package.scm)で
管理できます。package.scmが読まれた場合、PACKAGE_BUGREPORT
は
パッケージ記述のmaintainers
の最初のエントリで、また
PACKAGE_URL
はパッケージ記述のhomepage
で初期化されます。
パッケージ記述についての詳細はgauche.package
- パッケージメタ情報を見てください。
もしpackage.scmが存在し、かつcf-init
に引数が与えられた場合、
それぞれ対応する情報は一致していなければなりません。一致していなかった場合、
cf-init
はエラーを投げます。これは、package.scmへの移行の途中で、
どちらかの情報をアップデートし忘れたケースを捕まえるためです。
この手続きはまた、prefix
、bindir
あるいはsrcdir
といった
標準の置換パラメータをたくさん設定します。
どの置換パラメータが設定されるか見たければ、cf-init
の後に
cf-show-substs
を呼んでみてください。
{gauche.configure
}
それぞれ、configureスクリプトが、機能選択引数およびパッケージ選択引数を認識するようにします。
autoconfでの対応するマクロはAC_ARG_ENABLE
とAC_ARG_WITH
です。
これらの手続きはcf-init
もしくはcf-init-gauhce-extension
の前に
呼ばれなければなりません。
featureとpackage引数はシンボルでなければなりません。
機能選択引数は、--enable-feature=val
、
--enable-feature
、もしくは--disable-feature
という
引数です。後のふたつはそれぞれ
--enable-feature=yes
および
--enable-feature=no
と同じです。
このconfigure引数は、パッケージ自体が提供しているオプショナルな機能を選択するのに使います。
パッケージ選択引数は、--with-package=val
、
--with-package
、もしくは--without--package
という
引数です。後のふたつはそれぞれ
--with-package=yes
および
--with-package=no
と同じです。
このconfigure引数は、このパッケージが使う外部のパッケージを選択するのに使います。
cf-init
がコマンドライン引数処理中にこれらの形の引数を見つけた場合、
featureまたはpackageと、与えられたvalをグローバルなテーブルに
保存します。このグローバルテーブルは下のcf-feature-ref
および
cf-package-ref
でアクセスできます。
help-stringは文字列で、configure --help
で表示される
ヘルプメッセージに使われます。
下のcf-help-string
を使ってヘルプ文字列を整形することができます。
省略可能引数proc-if-givenは、与えられたら引数をひとつ取る手続きでなければなりません。 cf-initが対応するコマンドライン引数を見つけた時に、コマンドラインで与えられた valを引数としてこの手続きが呼ばれます。
省略可能引数proc-if-not-givenは、与えられたら引数を取らない手続きでなければなりません。 cf-initが対応するコマンドライン引数を見つけられなかった時に、 この手続きが呼ばれます。
下は、--with-local=PATH:PATH:…
という形式の
コマンドライン引数を受け取る例です
(このcf-arg-with
呼び出しはcf-init-gauche-extension
に含まれています)。
ヘルプ文字列を生成するのにcf-help-string
を使っているのに注目してください。
また、コマンドライン引数で与えられたオプションの値は、
3番めの引数の手続きへと渡されます。
(cf-arg-with 'local (cf-help-string "--with-local=PATH:PATH..." "For each PATH, add PATH/include to the include search paths and PATH/lib to the library search paths. Useful if you have some libraries installed in non-standard places. ") (^[with-local] (unless (member with-local '("yes" "no" "")) (cf-subst 'LOCAL_PATHS with-local))) (^[] (cf-subst 'LOCAL_PATHS "")))
{gauche.configure
}
コマンドライン引数のヘルプメッセージにふさわしい形式にフォーマットした文字列を
返します。戻り値をcf-arg-enable
やcf-arg-with
の
help-string引数に渡すことで、
configure --help
が統一的な出力を生成できます。
autoconfのAS_HELP_STRING
に相当します。
(cf-help-string "--option=ARG" "Give ARG as the value of option")
{gauche.configure
}
グローバルな機能テーブルおよびパッケージテーブルにnameで登録された値を
返します。これらはcf-init
の後で呼べます。
例えば、cf-arg-enable
でfoofeature
という機能に関するコマンドライン
引数を登録したとしましょう。ユーザがconfigure
スクリプトに
--with-foofeature=full
オプションを与えて起動した場合、
(cf-feature-ref 'foofeature)
は"full"
を返します。
コマンドライン引数が与えられなかった場合は#f
が返ります。
機能テーブルやパッケージテーブルに値を足したり変更したい場合は一般化set!
を使って
(set! (cf-feature-ref 'NAME) VALUE)
と書くことができます。
cf-init
手続きはconfig.log
にロギングするデフォルトログドレインを
オープンするので、log-format
を使ってconfig.log
にログを
残すことができます (ロギングの詳細についてはgauche.logger
- ユーザレベルのロギング参照)。
しかし、一貫した形式でメッセージを扱うために、以下の手続きが提供されています。 これらの手続きはログファイルと現在の出力ポートに(見やすいようにそれぞれ若干異なる 形式で)メッセージを出力します。
{gauche.configure
}
“checking XXX...” というメッセージを出力します。fmtとarg …
引数はformat
に渡されて、“XXX”の部分を生成します
(フォーマット出力参照)。
現在の出力ポートに向けては、改行文字は出力されません。
この後でcf-msg-result
が呼ばれることを期待しているからです。
以下は、cf-msg-checking
とcf-msg-result
を使っているソースからの
抜粋です。
(define (compiler-can-produce-executable?) (cf-msg-checking "whether the ~a compiler works" (~ (cf-lang)'name)) (rlet1 result ($ run-compiler-with-content (cf-lang-link-m (cf-lang)) (cf-lang-null-program-m (cf-lang))) (cf-msg-result (if result "yes" "no"))))
この例は、次のような出力を生成します:
checking whether the C compiler works... yes
また、ログファイルに対しては次の情報が記録されます:
checking: whether the C compiler works ... run-compiler-with-contentのログ出力 ... result: yes
これはautoconfのAC_MSG_CHECKING
に対応します。
{gauche.configure
}
fmtとarg …がformat
に渡され、フォーマット結果が出力されます。
通常、メッセージは単なる “yes” / “no” か、見つかった(ライブラリやヘッダの)名前です。
ログファイルに対しては、XXXをフォーマットされたメッセージとして、
“result: XXX”という文字列が記録されます。
cf-msg-checking
と一緒に使うことを想定しています。
上のcf-msg-checking
の例を見てください。
これはautoconfのAC_MSG_RESULT
に対応します。
{gauche.configure
}
フォーマットされたメッセージをコンソールとログファイルの両方に出力します。
最後に改行文字が追加されます。これはautoconfのAC_MSG_NOTICE
に対応します。
{gauche.configure
}
それぞれ、“Warning: XXX” および “Error: XXX” というメッセージを出力します。
fmtとarg …はformat
に渡されて、
XXXの部分の文字列を生成します (フォーマット出力参照)。
さらに、cf-msg-error
は終了コード1でプロセスを終了します。
これらは、autoconfのAC_MSG_WARN
とAC_MSG_ERROR
に相当します。
註: AC_MSG_ERROR
は終了コードが指定できますが、
cf-msg-error
は今の所1に固定です。
{gauche.configure
}
シェルのecho
コマンドを置き換える便利手続きです。
引数リストが> file
もしくは>> file
で終わっている場合
(fileはファイル名の文字列)、これはシェルのecho
のように動作します。
すなわち、その部分を除くarg …が空白文字を間に挟んで
fileに書き出されます。また最後に改行文字も書き出されます。
>
を使った場合はfileは上書きされ、>>
の場合は追記されます。
引数リストが上記リダイレクト指示で終わっていない場合は、 現在の出力ポートとログファイル両方に、arg …を空白文字を間に挟んで出力します。 また最後に改行文字も書き出されます。ログファイルに向けては、メッセージの前に “Message:”が出力されます。
configureスクリプトは、定義テーブルと置換パラメータテーブルという
二つのグローバルなテーブルを持っています。
定義テーブルはCプリプロセッサの定義に使われ、置換パラメータテーブルは
@PARAMETER@
の置換に使われます。
(置換パラメータをSchemeのパラメータオブジェクト(パラメータ参照)と
混同しないように!)。
{gauche.configure
}
symbolをvalueとするCプリプロセッサ定義を登録します。
valueには任意のSchemeオブジェクトを渡せますが、
そのdisplay
表記がそのままコンパイラのコマンドライン
(-DSYMBOL=VALUE
という形式)あるいはconfig.h内の定義
(#define SYMBOL VALUE
という形式)に使われるので、
妙な文字を入れない方が無難でしょう。valueが省略された場合は
1
が使われます。
註: 文字列を値とする定義、例えば #define FOO "foo"
を生成するには、
(cf-define 'FOO "\"foo\"")
とする必要があります。
これはautoconfのAC_DEFINE
に相当します。
{gauche.configure
}
symbolがcf-define
されていれば#t
を、
そうでなければ#f
を返します。
{gauche.configure
}
置換パラメータsymbolを値valueで定義します。
出力ファイルを生成する時に、テンプレートの@symbol@が
valueに置換されます。
valueは通常文字列ですが、任意のSchemeオブジェクトで構いません。
display
での印字表現が使われます。
valueが省略されるか#f
の場合はちょっと違った動作になります。
symbolがまだ置換パラメータとして登録されていない場合は、
空文字列を値として置換パラメータを登録します。既に登録されていた場合は値をそのまま残します。
これはautoconfのAC_SUBST
に相当します。ただ、autoconfeでは値を明示しなくても
同名のシェル変数の値が使われますが、Gaucheでは値を陽に与えなければなりません。
{gauche.configure
}
置換パラメータsymbolの値の前もしくは後に、
delimを挟んでvalueを付け足します。
symbolがまだ定義されていなかった場合な、
defaultが与えられ空文字列でなければあたかもそれが既に設定されていた値であるかのように
動作し、そうでなければvalueが最初の値となります(この場合、delimは使われません)。
delimが省略された場合は空白1文字の文字列が使われます。
置換パラメータにはよくコマンドライン引数をつけ足してゆくので
(例:コンパイラの-I include-dir
)、これらの手続きが便利に使えるでしょう。
フラグ
{gauche.configure
}
一時的に置換パラメータを新たな値に置き換えてbody …を実行します。
コンパイルチェックを違うパラメータで実行してみたい時に便利です。
bindingは以下のいずれかの形式です。
(var value)
一時的に置換パラメータvarの値をvalueで置き換えます。
(var + value)
一時的に置換パラメータvarの値の後に空白を挟んでvalueを追加します。
追加には上記のcf-subst-append
が使われます。
(var value +)
一時的に置換パラメータvarの値の前に空白を挟んでvalueを前置します。
追加には上記のcf-subst-prepend
が使われます。
(with-cf-subst ((LIBS "-L<path> -l<lib>")) (cf-try-compile-and-link ...))
autoconfではこのパターンは、現在の置換パラメータを保存し、 新たなパラメータに変更してチェックを走らせた後で置換パラメータを元に戻しますが、 とても面倒です。
{gauche.configure
}
symbolがcf-subst
で置換パラメータとして登録されていれば#t
を、
そうでなければ#f
を返します。
{gauche.configure
}
名前symbolを持つ環境変数を探し、見つかればそれを置換パラメータsymbolの
値とします。環境変数が見つからない場合、まだsymbolが置換パラメータとして登録されて
いなければ、空文字列を値として登録します。そうでなければ何もしません。
例えば、(cf-arg-var 'MYCFLAGS)
を呼び出しておくと、
ユーザは@MYCFLAGS@
の置換をMYCFLAGS=-g ./configure
のようにして
与えることができます。
これはautoconfのAC_ARG_VAR
に相当します。
ただし、autoconfと違ってヘルプ文字列を与えることはできません。
cf-arg-var
はcf-init
より後に呼ばれねばならず、
しかしヘルプ文字列はcf-init
内で構築される必要があるからです。
{gauche.configure
}
置換パラメータsymbolの値を返します。該当する置換パラメータが登録されていない場合、
defaultが与えられていればそれを返し、そうでなければエラーを投げます。
{gauche.configure
}
cf-ref
と同じように置換パラメータsymbolの値を返しますが、
該当する置換パラメータが登録されていない場合は空文字列を返します。
文字列補間の中で#"gosh ~(cf$'GOSHFLAGS)"
のように使えるので便利です。
{gauche.configure
}
Check if a named executable program exists in search paths, and if it
exists, sets the substitution parameter sym to the name
of the found program. The name to search is specified by prog-or-progs,
which is either a string or a list of strings.
The difference of cf-check-prog
and cf-path-prog
is that
cf-check-prog
uses the basename of the found program, while
cf-path-prog
uses its full path. These corresponds to
autoconf’s AC_CHECK_PROG
, AC_CHECK_PROGS
,
AC_PATH_PROG
and AC_PATH_PROGS
.
For example, the following
feature test searches either one of cc
, gcc
, tcc
or pcc
in PATH
and sets the substitution parameter MY_CC
to the name of the found one.
(cf-check-prog 'MY_CC '("cc" "gcc" "tcc" "pcc"))
If multiple program names is given, the search is done in the following
order: First, we search for the first item (cc
, in the above
example) for each of paths, then the second, etc. For example,
if we have /usr/local/bin:/usr/bin:/bin
in PATH
and
we have /usr/local/bin/tcc
and /usr/bin/gcc
, the above
feature test sets MY_CC
to "gcc"
. If you use cf-path-prog
instead, MY_CC
gets "/usr/bin/gcc"
.
If no program is found, sym is set to the keyword argument default if it is given, otherwise sym is left unset.
If the value keyword argument is given, its value is used instead of the found program name to be set to sym.
The list of search paths is taken from PATH
environment
variable. You can override the list by the paths keyword
argument, which must be a list of directory names. It may contain
nonexistent directory names, which are silently skipped.
The filter keyword argument, if given, must be a predicate
that takes full pathname of the executable program. It is called
when the procedure finds matching executable; the filter procedure
may reject it by returning #f
, in which case the procedure
keeps searching.
Note: If the substitution parameter sym is already set
at the time these procedure is called, these procedures do nothing.
Combined with cf-arg-var
, it allows the configure script caller
to override the feature test. For example, suppose you have the
following in the configure
script:
(cf-arg-var 'GREP) (cf-path-prog 'GREP '("egrep" "fgrep" "grep"))
A user can override the test by calling configure
like this:
$ ./configure GREP=mygrep
{gauche.configure
}
A convenience feature test to find C++ compiler. This searches
popular names of C++ compilers from the search paths, sets the
substitution parameter CXX
to the compiler’s name,
then tries to compile a small
program with it to see it can generate an executable.
This corresponds to autoconf’s AC_PROG_CXX
.
CXX
is cf-arg-var
’ed in this procedure. If a user
provide the value when he calls configure
, the searching
is skipped, but the check of generating an executable is still
performed.
If the substitution parameter CXXFLAGS
is set, its value
is used to check if the compiler can generate an executable.
CXXFLAGS
is cf-arg-var
’ed in this procedure.
This procedure also emulates autoconf’s AC_PROG_CXX
behavior—
if CXX
is not set, but CCC
is set, then we set
CXX
by the value of CCC
and skip searching.
{gauche.configure
}
Check if a header file header exists and usable, by
compiling a source program of the current language
that includes the named header file.
Return #t
if the header is usable, #f
if not.
Both procedure does the same thing. The name cf-check-header
corresponds to autoconf’s AC_CHECK_HEADER
.
If header requires other headers being included or
preprocessor symbols defined before it,
you can pass a list of strings to be emitted before the check
in the includes keyword arguments. The given strings
are just concatenated and used as a C program fragment.
The default value is provided by cf-includes-default
.
The following example sets C preprocessor symbol HAVE_CRYPT_H
to
1 if crypt.h is available. (Note: For this kind of common task,
you can use cf-check-headers
below. The advantage of using
cf-check-header
is that you can write other actions in Scheme
depending on the result.)
(when (cf-check-header "crypt.h") (cf-define "HAVE_CRYPT_H" 1))
{gauche.configure
}
Codify a common pattern of checking the availability of headers and
sets C preprocessor definitions.
This corresponds to autoconf’s AC_CHECK_HEADERS
.
This procedure is invoked for the side effects,
and returns an undefined vlaue.
See this example:
(cf-check-headers '("unistd.h" "stdint.h" "inttypes.h" "rpc/types.h"))
This checks availability of each of listed headers,
and sets C preprocessor definition HAVE_UNISTD_H
,
HAVE_STDINT_H
, HAVE_INTTYPES_H
and
HAVE_RPC_TYPES_H
to 1 if the corresponding header
file is available.
A list of strings given to includes are emitted to the
C source file before the inclusion of the testing header. You can
give necessary headers and/or C preprocessor definitions there;
if omitted, cf-includes-default
provides
the default list of such headers.
The keyword argument if-found and if-not-found are procedures to be called when a header is found to be available or to be unavailable, respectively. The procedure receives the name of the header.
The name of the C preprocessor definition is derived from the
header name by upcasing it and replacing non-alphanumeric characters
for _
. Note that this substitution is not injective:
Both gdbm/ndbm.h and gdbm-ndbm.h yield
GDBM_NDBM_H
. If you need to distinguish such files
you have to use cf-check-header
.
{gauche.configure
}
Returns a list of strings that are included in the check program by
default. It is actually a combination of C preprocessor #ifdef
s
and #include
s, and would probably be better to be called
cf-prologue-default
or something, but the corresponding
autoconf macro is AC_INCLUDES_DEFAULT
so we stick to this name.
Usually you don’t need to call this explicitly. Not giving the
includes
argument to cf-check-header
and
cf-check-headers
will make cf-includes-default
called implicitly.
{gauche.configure
}
Test if type is defined as a type name.
Return #t
if type is defined, #f
otherwise.
Two procedures are the same. The name cf-check-type
corresponds to AC_CHECK_TYPE
.
A list of strings given to includes are emitted to the
C source file before the inclusion of the testing header. You can
give necessary headers and/or C preprocessor definitions there;
if omitted, cf-includes-default
provides
the default list of such headers.
{gauche.configure
}
For each type in the list types, call cf-check-type
to
see it is defined as a type. If it is,
defines HAVE_type
, and calls if-found with the
type as an argument if provide. If the type is not defined and
if-not-found is provided, calls it with the type as an argument.
The argument includes is passed to cf-check-type
.
This corresponds to autoconf’s AC_CHECK_TYPES
.
Returns an undefiend value. This procedure is for side effects.
;; May define HAVE_PTRDIFF_T and/or HAVE_UNSIGNED_LONG_LONG_INT ;; depending on its availability: (cf-check-types '("ptrdiff_t" "unsigned long long int")) ;; Example of using includes to add an extra header. (cf-check-types '("float_t") :includes `(,@(cf-includes-default) "#include <math.h>\n"))
{gauche.configure
}
Test if symbol is declared as a cpp macro, a variable,
a constant, or a function.
Return #t
if type is defined,
#f
otherwise.
Two procedures are the same. The name cf-check-decl
corresponds
to autoconf’s AC_CHECK_DECL
.
A list of strings given to includes are emitted to the
C source file before the inclusion of the testing header. You can
give necessary headers and/or C preprocessor definitions there;
if omitted, cf-includes-default
provides
the default list of such headers.
{gauche.configure
}
For each symbol in symbols, call cf-check-decl
to see
if it is declared. If it is, define HAVE_DECL_symbol
to
1, and calls if-found with the symbol if provided.
If it is not declared, define HAVE_DECL_symbol
to 0,
and calls if-not-found with the symbol if provided.
This corresponds to autoconf’s AC_CHECK_DECLS
.
The argument includes is passed to cf-check-decl
.
This procedure returns an undefined value. This procedure is for side effects.
Note that, unlike other cf-check-*
routines which leave
HAVE_*
macro undefined when the item isn’t found, this one
always defines the macro and differentiate the result with its value.
This behavior is the same as AC_CHECK_DECLS
.
{gauche.configure
}
The aggregate.member argument is a string of aggregate type name
and its member concatenated by a dot, e.g. "struct password.pw_gecos"
.
It can also be a submember, e.g. "struct foo.bar.baz"
.
The aggregate part can be any type name (typedef-ed name is ok).
This test checks if member is a member of aggregate, and
returns #t
if so, or returns #f
if not.
Two procedures are the same. The name cf-check-member
corresponds to autoconf’s AC_CHECK_MEMBER
.
A list of strings given to includes are emitted to the
C source file before the inclusion of the testing header. You can
give necessary headers and/or C preprocessor definitions there;
if omitted, cf-includes-default
provides
the default list of such headers.
{gauche.configure
}
For each aggregate.member
in members, call cf-check-member
.
If the test passes, defines HAVE_aggregate_member
,
and calls if-found with aggregate.member if provided.
If the test fails, calls if-not-found with aggregate.member
if provided.
This corresponds to autoconf’s AC_CHECK_MEMBERS
.
The include argument is passed to cf-check-member
.
;; Defines HAVE_STRUCT_ST_RDEV and/or HAVE_STRUCT_ST_BLKSIZE ;; depending on their availability: (cf-check-members '("struct stat.st_rdev" "struct stat.st_blksize"))
This procedure is for side effects, and returns an undefined value.
{gauche.configure
}
See if a function func is available. This emits C code
to call func (with dummy declaration) and tries to compile and link,
using current value of substitution parameter LIBS
.
The value of cf-includes-default
is at the top of the emitted C code.
They return #t
if func is available, #f
otherwise.
Two procedures are the same. The name cf-check-func
corresponds to autoconf’s AC_CHECK_FUNC
.
{gauche.configure
}
For each function name func in funcs, call cf-check-func
to determine availability. If it is available, define
HAVE_func
, and calls if-found
with func
if provided. If it is not available, calls if-not-found
with func if provided.
This corresponds to autoconf’s AC_CHECK_FUNCS
.
This procedure is for side effects, and returns an undefined value.
{gauche.configure
}
See if a library lib can be linked and a function fn in it
is callable. Return #t
it is, #t
if not.
Two procedures are the same. The name cf-check-lib
corresponds to autoconf’s AC_CHECK_LIB
.
Give the name you pass after -l
option to lib;
for example, if you want to check availability of libm
, you can
say as follows:
(cf-check-lib "m" "sin")
This generates a C source that calls fn and try to compile and link it to generate executable. If linking lib requires additional libraries, it should be listed in other-libs:
(cf-check-lib "Xt" "XtDisplay" :other-libs '("-lX11" "-lSM" "-lICE"))
If compilation and linking succeeds,
if-found is called at the
tail position with
the library name ("m"
and "Xt"
in the above examples,
respectively) as the argument.
The default behavior is to add
-llib
in the left of substitution parameter LIBS
,
and set HAVE_LIBlib
definition, then
returns #t
.
If compilation or linking fails, if-not-found is called at
the tail position with the library name. The default behavior is
to return #f
.
The default behavior of if-found and if-not-found allows
cf-check-lib
to be used as predicate as well. If you merery
want to take an action depending on whether the library is found or
not, you can write like this:
(unless (cf-check-lib "foo" "foo_fn) ... do something if libfoo isn't available ...)
Use if-found and/or if-not-found only if you want to override the default behaviors.
{gauche.configure
}
Like cf-check-lib
, but can be used if you’re not sure which
library contains desired function.
This corresponds to autoconf’s AC_SEARCH_LIBS
. Note that
this takes function name first, while cf-check-lib
takes
function name second—blame autoconf for this inconsistency.
First it tests if fn is available without any library in libs
(that is, with the ones already in LIBS
and specified in
other-libs). If not, it tests each library in libs
in turn.
If fn is found, if-found is called at the tail position,
with the name of
the library as an argument (if fn is available without any
library, the argument is #f
). If omitted, and a library
is required, then the library is
added to the substitution parameter LIBS
.
The default procedure returns #t
.
If fn isn’t found in any of the libraries, if-not-found
is called at the tail position
with #f
as the argument. The default procedure
does nothing and just returns #f
.
The default behavior of if-found and if-not-found allows
cf-search-libs
to be used as predicate as well. If you give
alternative procedures, keep in mind that their return value
will be returned to cf-search-libs
.
{gauche.configure
}
This corresponds to autoconf’s AC_PATH_X
. It checks if
X11 is available, and returns three values.
The first value is a boolean value indicates if X11 is available. The second and third values are strings for the directory name to find X11 headers and libraries, respectively. The second and third value can be empty strings if the compiler doesn’t need additional flags to find X11 stuff.
This does not set other substituion parameters.
You typically want to use cf-path-xtra
below instead.
(In autoconf, AC_PATH_X
sets shell variables to tell
the results. In Scheme, it is more natural to use return
values.)
{gauche.configure
}
Check X11 availability with cf-path-x
above, and
sets up the following substitution parameters:
X_CFLAGS
Additional CFLAGS needed to build with X11.
X_PRE_LIBS
Additional library link flags (-llib …
)
that need to come before -lX11
flag.
X_LIBS
Additional library search flags (-Ldir …
)
to link with X11. (Note: The name is for the compatibility
with autoconf. It should really be named as X_LDFLAGS
.)
X_EXTRA_LIBS
Additional library search flags (-Ldir …
)
to link with X11. Those libraries should come after -lX11
flag.
This procedure corresponds to autoconf’s AC_PATH_XTRA
.
Note that -lX11
is not included in those parameters;
they must be specified explicitly.
If X11 is not available, those parameters get empty strings.
The gauche.configure
module provides a generic mechanism
to construct a small test program, compile it, and run it.
Currently we only support C
and C++
; we’ll add support
for other languages as needed.
{gauche.configure
}
Returns a current language, which is an opaque object.
Currently C and C++ are supported; see cf-lang-C
and
cf-lang-C++
below.
The current language is used by compiler tests.
{gauche.configure
}
Returns an opaque object representing C or C++, respectively.
You can use them to parameterize cf-lang
to run
compiler tests.
(parameterize ([cf-lang (cf-lang-C++)]) ... run compiler tests ...)
{gauche.configure
}
Returns a string tree that consists a stand-alone program for
the current language. Prologue and body must be a
string or a list of strings. If it is a list, strings are
concatenated with newlines.
Prologue comes at the beginning of
the source, and body is included in the part of the program
that’s executed. If the current language is C, the code fragment:
(use text.tree) (write-tree (cf-lang-program '("#include <stdio.h>" "#include <stdlib.h>") '("printf(\"()\");")))
would produce something like this:
#include <stdio.h> #include <stdlib.h> int main(){ printf("()"); ; return 0; }
{gauche.configure
}
This is a convenience routine. It returns a string tree
of a program in the current language, that creates a file
named conftest.out, then exits with zero status on
success, or nonzero status on failure.
{gauche.configure
}
Returns a string tree of a program in the current language,
that calls func-name as a function with no arguments.
{gauche.configure
}
The arguments must be a string or a list of strings. If it is
a list, it is taken as a list of lines, concatenated with newlines.
This test generates a program with the given content,
using cf-lang-program
, then try to compile it.
On success, #t
is returned. On failure, #f
is returned.
The generated program, command line, and the result is logged.
{gauche.configure
}
The arguments must be a string or a list of strings. If it is
a list, it is taken as a list of lines, concatenated with newlines.
This test generates a program with the given content,
using cf-lang-program
, then try to compile and link it.
On success, #t
is returned. On failure, #f
is returned.
The generated program, command line, and the result is logged.
{gauche.configure
}
A convenience routine to produce typical output.
It does the following:
cf-make-gpd
.
VERSION
file that contains the value of
PACKAGE_VERSION
substitution parameter.
Makefile.in
’s under the source directory
(the value of substitution parameter srcdir
),
and process them to produce Makefile
’s.
If file … are given, file.in
are also
processed as well to produce file.
See cf-output
below for the details.
cf-config-headers
,
process them as well.
{gauche.configure
}
Generates file’s from the input templates.
This corresponds to autoconf’s AC_OUTPUT
.
For each file, a file named file.in is read
as a template. Within the file, @PARAMETER@
is substituted
with the value of (cf$ 'PARAMETER)
. If the named parameter
isn’t registered, a warning is issued and the parameter is left
unsubstituted.
If config headers are not registered via cf-config-headers
,
a substitution parameter DEFS
is replaced with
all the definitions in the form of -D...
. For example,
if you have checked header files foo/bar.h and
foo/baz.h, DEFS
gets the value
-DHAVE_FOO_BAR_H -DHAVE_FOO_BAZ_H
.
If config header is registered by cf-config-headers
,
they are processed as well. In such case, the substitution
parameter DEFS
gets the value -DHAVE_CONFIG_H
.
{gauche.configure
}
Sets up config header files to be processed. Usually a config header
file is named config.h, and contains definitions determined
by feature tests.
The header-or-headers argument may be a string header-spec
or a list of string header-specs, where each header spec is
a header file name (e.g. "config.h"
) or a header name
and a input file name concatenated with a colon
(e.g. "config.h:config.h.templ"
). If it’s just a header name,
input file name is assumed to be the header file name with ".in"
appended.
The input template of config header file contains a bunch of
#undef
directives, such as the following:
/* Gauche ABI version string */ #undef GAUCHE_ABI_VERSION /* Define if Gauche handles multi-byte character as EUC-JP */ #undef GAUCHE_CHAR_ENCODING_EUC_JP /* Define if Gauche handles multi-byte character as Shift JIS */ #undef GAUCHE_CHAR_ENCODING_SJIS /* Define if Gauche handles multi-byte character as UTF-8 */ #undef GAUCHE_CHAR_ENCODING_UTF_8
Once processed, the generated header file has either
#undef
line is replaced with #define
, or
commented out, depending on the definitions determined by feature
tests.
/* Gauche ABI version string */ #define GAUCHE_ABI_VERSION "0.97" /* Define if Gauche handles multi-byte character as EUC-JP */ /* #undef GAUCHE_CHAR_ENCODING_EUC_JP */ /* Define if Gauche handles multi-byte character as Shift JIS */ /* #undef GAUCHE_CHAR_ENCODING_SJIS */ /* Define if Gauche handles multi-byte character as UTF-8 */ #define GAUCHE_CHAR_ENCODING_UTF_8 /**/
Note that the lines other than #undef
are copied as they are.
The substitution parameter DEFS
behaves differently whether
config header is specified or not. If no config header is registered,
The value of DEFS
is a C command-line arguments for definitions,
e.g. -DGAUCHE_ABI_VERSION=0.97 -DGAUCHE_CHAR_ENCODING_UTF8
.
If config header files are registered, the value of DEFS
becomes
simply -DHAVE_CONFIG_H
.
{gauche.configure
}
Print all substitution parameters; this is for debugging.
For each substitution parameter name and value,
formatter is called with them; the default is
(^[k v] (format #t "~16s ~s" k v))
.
{gauche.configure
}
Generate gpd (Gauche package description) file,
PACKAGE_NAME.gpd, where PACKAGE_NAME
is the
package’s name either taken form package.scm or
the argument to cf-init
.
See gauche.package
- パッケージメタ情報, for the package description file format.