Gauche Users’ Reference

version 0.9.11

Shiro Kawai (shiro@acm.org)

Copyright (© 2001-2020 Shiro Kawai (shiro@acm.org)

Table of Contents

1

Introduction 1
1.1 Overview of Gauche. e 1
1.2 NOtabionS . .o oot 2

1.2.1 Entry format. 2
1.2.2 Names and NameSPACESottt ettt ettt e e e 4

Concepts. ... 5
2.1 Standard conformanceo i 5
2.2 Multibyte Stringsot 12
2.3 Multibyte SCriptso 13
2.4 Case-SENSITIVITY « .« .ttt et 14
2.5 Integrated object systemo 14
2.6 Module SYStemo e 15
2.7 Compilation e 16

Programming in Gauche, 18
3.1 Invoking Gosh 18
3.2 Interactive development. 23

3.2.1 Working in REPL 23
3.2.2 Inpub editingovoiii 28
3.3 Writing Scheme SCripts.ot 29
3.4 DEbUGGING . o o 31
3.5 Using platform-dependent featureso 32
3.6 Profiling and tuning 34
3.6.1 Using profiler 34
3.6.2 Performance tipS.oou 35
3.7 Writing Gauche modules. 36
3.8 Using extension packagesoo.uuiiii i 37
3.9 Building standalone executables. i 39

Core Syntaxooi 42

4.1 Lexical structure. 42
4.1 1 Sharp SYIbAX ..ottt et e e 43
4.1.2 Hash-bang token 45

4.2 Literals. . ..o e 45

4.3 MaKing proCedures.ttt e 46

4.4 ASSIZNINENES . . .ottt e 51

4.5 Conditionals. 53

4.6 Binding constructs.o e 56

AT SEQUENCITIE « v ettt ettt e e 60

4.8 THerabion . .. oottt e 60

4.9 QUASIQUOTATION . .« oottt ettt e e e 63

410 Definitions.o 65
4.10.1 Into the Scheme-Verse e 69

411 INClUSIONS . ..o et 71

4.12 Feature conditional oo 72

413 Modules . ..o 75

4.13.1 Module sSemantiCs.uuu ettt e 75
4.13.2 Modules and Libraries 77
4.13.3 Defining and selecting modules........ i i 7
4.13.4 Using modules e 78
4.13.5 Module inheritancec.oo i e 80
4.13.6 Module IntroSpectionoiiiiiiii 80
4.13.7 Predefined modules 82

B MaCrOS 84
5.1 Why hygienic? 84
5.2 HygIenic MaCTOSottt ittt ettt e 87
5.2.1 Syntax-rules macro transformer 88
5.2.2 Explicit-renaming macro transformer.............. i 90
5.3 Traditional macroS. i 94
5.4 Hybrid mMacros.ot 94
D.0 Identifiers o i 95
5.6 Debugging MacCTOSottt et e e e 96
5.6.1 Tracing mMacro eXPanSIONot vttt ettt et ettt 97
5.6.2 Expanding macros manually 99
D7 Macro Ubilities . ..o 101
6 Core library 102
6.1 Types and Classes.ottt 102
6.1.1 Prescriptive and descriptive typesouuiii i 102
6.1.2 Generic type prediCatesttt e 102
6.1.3 Type expressions and type consturctors, 103
6.1.4 Predefined Classes. 105
6.2 Equality and compariSon.t 106
6.2.1 Equalityo 106
6.2.2 COmIPATISOIL. « .\ttt ittt ettt et e e e e e e e e 107
6.2.3 Hashing 109
6.2.4 Basic comparators e 112
6.2.4.1 Comparator class and constructors, 112
6.2.4.2 Comparator predicates and aCCeSSOTScvvvutiiiiniieennieeann. 113
6.2.4.3 Predefined comparators 115
6.2.4.4 Combining comparatorscouutiutteiit i, 117

0.3 NUIDEIS . .o e 118
6.3.1 NUIDbEr ClasSesvvvt e 118
6.3.2 Numerical predicates.uuuurmm it e 118
6.3.3 Numerical COmMPATriSONttt e 120
6.3.4 Arithmetics. 122
6.3.50 Numerical COnVersionst 128
6.3.6 Basic bitwise operations. i 131
6.3.7 EnNdianmnessooiiiiiiii i 133
0.4 Bo0O0leams 134
6.5 Undefined values 134
6.6 Pairs and LISt 135
6.6.1 Pairand null class..........oo i 135
6.6.2 Mutable and immutable pairs............ e 135
6.6.3 List predicates.ooiiiii 136
6.6.4 List COMStIUCHOIS . .o\ttt 136
6.6.5 List accessors and modifiers. ... 138

6.6.6 Walking over Lists. 141

6.6.7 Other List ProCeduresoiiiiii i 145
6.6.8 Association Lists 146
6.6.9 Extended pairs and pair attributes........... .. 148
6.7 Symbols . ..o 149
6.8 KeyWords 150
6.8.1 Keyword and symbol integration............ ... i i 152
6.9 CharacCtersottt e e 154
6.10 Character Setsttt e 159
6.10.1 Character set literals i 159
6.10.2 Predefined character sets........ ..o 161
6.10.3 Character set OPEratiOnStttt ittt et 163
B.11 SHTigS ettt 164
6.11.1 SHrING SYIBAK <« . vttt e e et e e e e e e 165
6.11.2 String predicates. 166
6.11.3 String constructorsttt e 166
6.11.4 String interpolation.......... ... 166
6.11.5 SEIING CUTSOTS .« .ttt ettt e e e et e e e 168
6.11.6 String INdexXingouu it e 170
6.11.7 String accessors & modifiers 170
6.11.8 String COMPATISOIL . .« oottt e e e 171
6.11.9 String utilitieso 172
6.11.10 Incomplete Strings..........oouoiimiiii e 175
6.12 Regular eXpressions.t 177
6.12.1 Regular expression SYNtaxttt 177
6.12.2 Using regular eXpressionsttt ettt 179
6.12.3 Inspecting and assembling regular expressions...............c..oooiiii... 187
6.13 Vector family 188
6.13. 1 VECHOTS . . ettt e 188
6.13.2 Uniform veCtorst e 191
6.13.3 BItvectorsot e 194
6.13.4 Weak VECtOTS . . .t 196
6.14 DiICtIonariest 197
6.14.1 Hashtables.ooiiii 197
6.14.2 TrEOIMaADS . « o oottt ettt e et e e 203
6.15 Procedures and continuations............. .. i i 208
6.15.1 Procedure class and applicability.......... ..o i i 208
6.15.2 UniIversal ACCESSOTttt ettt et e e 209
6.15.3 CombInators. . . oottt e 211
6.15.4 Optional argument parsing.............oouuiiiiiiiiiii e 213
6.15.5 Procedure arityooiiii 215
6.15.6 Applicable 0bJectSttt 215
6.15.7 Continuationst 216
6.15.8 Multiple values 218
6.15.9 Folding generated values.............ooiiiiiiiii i 218
6.16 Parameterso 219
0. 17 BOXES . oottt 221
6.18 Lazy evaluation e 222
6.18.1 Delay, force and lazy....... ..o e 222
6.18.2 LAaZy SEQUENCESttt ettt ittt e e e 223
6.19 EXCOPEIONS . . oot 227
6.19.1 Exception handling overview 228
6.19.2 Signaling exceptionso.u it 230
6.19.3 Handling exceptionsttt e 231

6.19.3.1 High-level exception handling mechanism.............................. 231

6.19.3.2 Behavior of unhandled exception...............ooiiiiiiiiiiiin. 233
6.19.3.3 Low-level exception handling mechanism 234
6.19.4 ConditionS.ttt e 235
6.20 Eval and repl. 239
6.21 Input and Outpub e 240
6.21. 1 POTtS . 240
6.21.2 Port and threadsttt e 241
6.21.3 Common port OPerationsee ettt 241
6.21.4 File POTts. . oottt 245
6.21.5 String Ports ..ottt 248
6.21.6 Coding-aware POTTSuuu ittt e e 250
6.21.7 DU . . oot 251
6.21.7.1 Reading data ... e 251
6.21.7.2 Reader lexical mode i 253
6.21.7.3 Read-time constructor 254
6.21.7.4 Input utility functions 255
6.21.8 OUbPUb . o ettt 255
6.21.8.1 Layers of output routinesc i 255
6.21.8.2 Output controls. 256
6.21.8.3 Object outputt 257
6.21.8.4 Formatting output........ .o i 259
6.21.8.5 Low-level output...... ... 264
6.22 Loading Programs.o 264
6.22.1 Loading Scheme file...... i 264
6.22.2 Load dynamic libraryo e 266
6.22.3 Require and provideo 266
6.22.4 Autoload 267
6.22.5 Operations on Hbraries. e 268
6.23 Sorting and METZINgttt e 269
6.24 System Interface. 271
6.24.1 Program terminationuiiiiiiiii e 271
6.24.2 Command-line argumentsot 273
6.24.3 Environment INQUITY oootttttn e 273
6.24.4 FilesyStemsottt 275
6.24.4.1 DiIrectories.o 275
6.24.4.2 Directory manipulation 277
6.24.4.3 Pathnames i 278
6.24.4.4 File stats 280
6.24.4.5 Other file operations......... ... 282
6.24.5 Unix groups and USEISttt ettt et e et e 283
6.24.6 Locale. ... 284
6.24.7 Signalo 285
6.24.7.1 Signals and signal setso 286
6.24.7.2 Sending signals 287
6.24.7.3 Handling signals............. i 287
6.24.7.4 Masking and waiting signals i 290
6.24.7.5 Signals and threads i 291
6.24.8 System INQUITYo ot 291
6.24.9 THIE . oottt e 294
6.24.10 Process managementt 296
6.24.11 I/O multiplexing 299
6.24.12 Garbage collection. 301
6.24.13 Memory MapPPIIg. . . .« vttt et ettt 301

6.24.14 Miscellaneous system calls....... ... i i 302

6.25 Development helper APL. 304
6.25.1 Debugging aid 304
6.25.2 Profiler APT 305

7 Object system............... i 306

7.1 Introduction to the object system........ 306

07 T P 313
7.2.1 Defining class.o 313
7.2.2 InReritanceou i 315
7.2.3 Class ODJECt .o v vt 317
7.2.4 Slot definition object. 318
7.2.5 Class redefinition 319
7.2.6 Class definition examples i 320

7.3 Instance. 322
7.3.1 Creating INSEANCEttt e 322
7.3.2 AcCCessing INSEANCEottt e 323
7.3.3 Changing Classest 324

7.4 Generic function and method 326

7.5 Metaobject protocol 328
7.5.1 Class instantiationo 328
7.5.2 Customizing slot acCess 331
7.5.3 Method instantiation i 334
7.5.4 Customizing method application o i i 334
7.5.5 Customizing class redefinition........... 335

8 Library modules - Overview 336

8.1 Finding libraries you need e 336
8.1.1 Library directory - data containers...............oooiiiiiiiiiiiiiiennn... 337
8.1.2 Library directory - string and character L. 338
8.1.3 Library directory - data exchangeo i, 338
8.1.4 Library directory - files 339
8.1.5 Library directory - processes and threads............. i, 339
8.1.6 Library directory - networking i 339
8.1.7 Library directory - input and output i 339
8.1.8 Library directory - time. 340
8.1.9 Library directory - bits and bytes 340

8.2 Naming convention of libraries.......... ... i i 340

8.3 Obsolete and superseded modules............... i 341

9 Library modules - Gauche extensions...................... 343

9.1 gAUChE.ATTAY = ATTAYS « o\ttt ettt et et et et 343

9.2 gauche.base - Importing gauche built-ins......... L 350

9.3 gauche.cgen - Generating C code ...t 351
9.3.1 Generating C source files. ... e 351
9.3.2 Generating Scheme literals........ ... i 355
9.3.3 Conversions between Scheme and C...... i i 356
9.3.4 CiSE - CIn S eXPreSsiOn . .« oottt ettt ettt e e e 359

0.3.4.1 CiSE OVEIVIEW . . .ttt ittt ettt e e e e e e e e e 359
0.3.4.2 CiSE SYNEAX . ..ottt 360
9.3.4.3 CiSE Proceduresouinntt ittt e 363

9.3.5 Stub generation. e 364
9.4 gauche.charconv - Character Code Conversion......................oooiiia... 367

9.4.1 Supported character encoding schemes i .. 368

9.4.2 Autodetecting the encoding scheme 370
9.4.3 CONVEISION POTTS. .« ottt ettt ettt e ettt et e e et e et 370
9.5 gauche.collection - Collection framework.................. 372
9.5.1 Mapping over collectiono 373
9.5.2 Selection and searching in collection............ ... i i 376
9.5.3 Miscellaneous operations on collection............. ... i 377
9.5.4 Fundamental iterator creators........... ..o 378
9.5.5 Implementing collectionsc.coiiiiiiii i 380
9.6 gauche.config - Configuration parameterscoiiiiiiiiiiiian.. 381
9.7 gauche.configure - Generating build files..........l 381
9.7.1 Structure of configure script and build files.............. 381
9.7.2 Configure AP 382
9.8 gauche.connection - Connection framework................... L 394
9.9 gauche.dictionary - Dictionary framework i 396
9.9.1 Generic functions for dictionaries..........o i 396
9.9.2 Generic diCtiONariesttt et e e 398
9.10 gauche.fcntl - Low-level file operations........... ... i 400
9.11 gauche.generator - GENEratorSuuiutt ittt i, 403
9.11.1 Generator CONStIUCEOTS vuutt ettt 404
9.11.2 Generator Operationstuutee ettt 408
9.11.3 Generator COMSUIMETSttt ettt e ettt et e e e et e e e eaee e 413
9.12 gauche.hook - HOOKS. ... 415
9.13 gauche.interactive - Utilities for interactive session............... 416
9.14 gauche.lazy - Lazy sequence utilities........... ... 418
9.14.1 Lazy sequence CONStIUCEOTSottt iiee e 419
9.14.2 Lazy sequence OPerationsuuueett et e e ane i 419
9.14.3 Lazy sequence with positions.......... i i 422
9.15 gauche.listener - Listener......... ..o i 423
9.16 gauche.logger - User-level logging i, 426
9.17 gauche.mop.instance-pool - Instance pools............. il 428
9.18 gauche.mop.propagate - Propagating slot access.................. 429
9.19 gauche.mop.singleton - Singleton........... i 430
9.20 gauche.mop.validator - Slot with validator........... o .. 431
9.21 gauche.net - Networking...... ... 432
9.21.1 Socket address. . ..ottt 433
9.21.2 High-level network functions........ o i 435
9.21.3 Low-level socket interface......... ... 438
9.21.4 Netdb interface.o e 443
9.22 gauche.package - Package metainformation ool 445
9.23 gauche.parameter - Parameters (extra)ooiuiiiiiiiiiiiiiiiiiia.. 447
9.24 gauche.parseopt - Parsing command-line options, 448
9.25 gauche.partcont - Partial continuations oo 452
9.26 gauche.process - High-level process interface ii.. 456
9.26.1 Running SUbPIoCeSS.ottt 456
9.26.2 Running process pipeline e 461
9.26.3 Process 0bJecto 462
9.26.4 ProCess POTTS . oottt e 465
9.26.5 Process COnnection.t 469
9.27 gauche.record - Record types.oouuiiiii i 469
9.27.1 Introductiono 470
9.27.2 Syntactic Layer. ... 470
9.27.3 Inspection layer. i e 473
9.27.4 Procedural layer 473

9.27.5 Pseudo record tyPesttt 474

9.28 gauche.reload - Reloading modules........... il 475
9.29 gauche.selector - Simple dispatcher....... 476
9.30 gauche.sequence - Sequence framework............ o oo 477
9.30.1 Fundamental SEqUENCE ACCESSOTSttt t ettt et aaiee e 478
9.30.2 SlCING SEQUEIICE . . .« ettt ettt et et e e e 478
9.30.3 MapPINg OVET SEQUETICES . . .« vttt ettt ettt e e ettt e e 479
9.30.4 Other operations OVEr SEQUEIICESttt ettt e e aaee s 480
9.30.5 Implementing SEQUENCEttt e 485
9.31 gauche.syslog - SYSlOgt 485
9.32 gauche.termios - Terminal control....... i i 486
9.32.1 Posix termios interface.o.iiiii i 486
9.32.2 Common high-level terminal control........... 488
9.33 gauche.test - Unit Testingoo i 489
9.34 gauche.threads - Threads..........ccoiiiiiiiiiii i i 495
9.34.1 Thread programming tips.oouuuttin e 496
9.34.2 Thread proCedures.ot e et e 498
9.34.3 Synchronization primitives.......... ... 501
0.34.3.1 MUbEX .o e 501
9.34.3.2 Condition variable 504
0.34.3.3 ABOIIL . .ottt 505
0.34.3.4 Semaphore. 506
0.34.3.5 Latch.o 507
9.34.3.6 BaTTier 507
9.34.4 Thread eXCepPtiOoNSottt e 508
9.35 gauche.time - Measure timings.......... ... i i 509
9.36 gauche.unicode - Unicode utilities......... i i i 513
9.36.1 Unicode transfer encodings.......... ... 513
9.36.2 Unicode text segmentationuieiieiiiii e, 516
9.36.3 Full string case cONvVersionouiuitiiniie i, 517
9.36.4 East asian width propertyoo i 518
9.37 gauche.uvector - Uniform vector library....... o ... 518
9.37.1 Uvector basic Operationscouuiiiiiii e 519
9.37.2 Uvector conversion operations.c.uuiiiiteiieiniiniiiiiiieeee... 524
9.37.3 Uvector nUmMeric OPerationsovvuttn et 527
9.37.4 Uvector block I/O 529
9.37.5 Bytevector compatibility...... ... 531
9.38 gauche.version - Comparing version numbers................... 532
9.39 gauche.vport - Virtual ports....... ... 534
10 Library modules - R7RS standard libraries.............. 542
10.1 R7RS integrationt e 542
10.1.1 Traveling between two worlds back and forth........... 542
10.1.2 Three import fOrms. e 544
10.2 R7RS small languaget e 546
10.2.1 R7RS Hbrary form e e 546
10.2.2 scheme.base - R7RS base library........o i i i 547
10.2.3 scheme.case-lambda - R7RS case-lambda................. 549
10.2.4 scheme.char - R7TRS char library..........o i i 549
10.2.5 scheme.complex - R7TRS complex numbers.......... 550
10.2.6 scheme.cxr - RTRS CXI aCCESSOTS . .ottt e 550
10.2.7 scheme.eval - RTRS eval...... ... 550
10.2.8 scheme.file - R7RS file library ... 551
10.2.9 scheme.inexact - R7RS inexact numbers............ L 551

10.2.10 scheme.lazy - R7RS lazy evaluation............ oot 952

10.2.11 scheme.load - R7TRS loado 552
10.2.12 scheme.process-context - R7TRS process context 552
10.2.13 scheme.read - RTRS read ... 553
10.2.14 scheme.repl - R7TRS repl.. ..o 553
10.2.15 scheme.time - RTRS time....... o i 553
10.2.16 scheme.write - RTRS write e 554
10.2.17 scheme.r5rs - R5RS compatibility 554
10.3 RTRS Large . .ottt 555
10.3.1 scheme.list - R7TRS lists. e 555
10.3.2 scheme.vector - RTRS vectors o i, 559
10.3.3 scheme.vector.@ - R7RS uniform vectors il 564
10.3.4 scheme.sort - R7TRS SOto 564
10.3.5 scheme.set - RTRS sets 568
10.3.6 scheme.charset - R7TRS character sets i .. 576
10.3.6.1 Character-set constructorsot 576
10.3.6.2 Character-set COmMPAariSONvuttt et i aiee e 577
10.3.6.3 Character-set iteration........... .. 577
10.3.6.4 Character-set qUETYot 578
10.3.6.5 Character-set algebra i 579
10.3.7 scheme.hash-table - RTRS hash tables 580
10.3.8 scheme.ilist - R7TRS immutable lists, 583
10.3.9 scheme.rlist - R7TRS random-access lists oo, 584
10.3.10 scheme.ideque - R7RS immutable dequest 585
10.3.11 scheme.text - R7TRS immutable texts il 588
10.3.12 scheme.generator - R7TRS generatorsot 592
10.3.13 scheme.lseq- R7RS lazy sequencesoooiiiiiiiiiinanenn. 594
10.3.14 scheme.stream - RTRS stream 596
10.3.15 scheme.box - RTRS boXes . ..o 597
10.3.16 scheme.list-queue - RTRS list queues........... it 597
10.3.17 scheme.ephemeron - R7RS ephemeron............... 600
10.3.18 scheme.comparator - R7RS comparators.......... ..., 601
10.3.19 scheme.regex - R7RS regular expressions................. 601
10.3.20 scheme.mapping - RTRS mappings ..., 613
10.3.20.1 MapDings . . .o vve ettt e 614
10.3.20.2 Hashmapst e e 620
10.3.21 scheme.division - R7RS integer division...............ot 624
10.3.22 scheme.bitwise - R7RS bitwise operations............................... 625
10.3.23 scheme.fixnum - RTRS fixnums oo i i 629
10.3.24 scheme.flonum - R7RS flonum o i i 631
10.3.25 scheme.bytevector - R7TRS bytevectors...............o ... 640
10.3.26 scheme.show - R7RS combinator formatting 642
Library modules - SRFIs 649
11.1 SRFIs that have become R7RS-large........ ... i 649
11.2 srfi-4 - HOmOZENneoUS VECTOTS. .« oottt ettt 650
11.3 srfi-5- A compatible let form with signatures and rest arguments 650
11.4 srfi-7 - Feature-based program configuration language......................... 651
11.5 srfi-13 - String Hbrary 652
11.5.1 General CONVENTIONSttt ettt ettt 652
11.5.2 String predicates.o 652
11.5.3 String constructorso e 653
11.5.4 String Selectionot 654
11.5.5 SEring COmMPariSOnttt 655

11.5.6 String prefixes & suffixes.o 656

11.5.7 String searchingt e 657
11.5.8 String case MapPINgttt e e 657
11.5.9 String reverse & append e 658
11.5.10 String Mapping . ..o .v vttt et ettt 658
115,11 String rotation e 659
11.5.12 Other string operationsouuii it 659
11.5.13 String filtering.ot 660
11.5.14 Low-level string procedures, 660
11.6 srfi-19 - Time data types and procedures.coovuuiiiiiiiennieeenn.. 660
11.6. 1 THIME BYPES « o e ettt et e e e 661
11.6.2 THME QUETIES . . . ettt ettt ettt e et e e e e e e e et 661
11.6.3 Time ProCedUTES. vttt ettt ettt et e e e e e 662
11.6.4 Date . oottt 662
11.6.5 Date reader and Writer............ooiuiii i 664
11.7 srfi-27 - Sources of Random Bits......... ... i i 666
11.8 srfi-29 - Localization. ... e 667
11.9 srfi-37 - args-fold: a program argument Processorc..ccevueenueen... 668
11.10 srfi-42 - Eager comprehensions.ot 670
11.11 srfi-43 - Vector library (1egacy)ouunuiuiin e 676
11.12 srfi-55 - Requiring exXtensionsttt 677
11.13 srfi-60 - Integers as bits ... 677
11.14 srfi-64 - A Scheme API for test suites............ooiiiiiii i, 679
11141 Test AP ..o 679
11.14.2 TSt TUINIIET . . . oot e ettt et e et e et e e et 679
11.15 srfi-66 - Octet VECtOrs . ..ot 679
11.16 srfi-69 - Basic hash tables 680
11.17 srfi-74 - Octet-addressed binary blocks.........o o il 682
11.18 srfi-78 - Lightweight testing i 684
11.19 srfi-98 - Accessing environment variables........... L. 685
11.20 srfi-101 - Purely functional random-access pairs and lists..................... 686
11.21 srfi-106 - Basic socket interface.......... i 686
11.22 srfi-112 - Environment inquiryooooiioiiiiniiiiiiii 689
11.23 srfi-114 - ComPAaratorsottt ettt ettt e e 689
11.24 srfi-118 - Simple adjustable-size strings i i 694
11.25 srfi-120 - Timer APIs . ..o 695
11.26 srfi-129 - Titlecase proceduresuuuueami it 696
11.27 srfi-130 - Cursor-based string library......... ... i 697
11.28 srfi-152 - String library (reduced).......... i 698
11.29 srfi-154 - First-class dynamic extents i i, 701
11.30 srfi-160 - Homogeneous numeric vector libraries.............................. 702
11.31 srfi-162 - Comparator sublibrary........... ... i 702
11.32 srfi-170 - POSIX API .. o 702
11.33 srfi-173 - HoOks (SIf)....c.ouinii e 708
11.34 srfi-174 - POSIX timesSpecs . . .« o vttt e 709
11.35 srfi-175 - ASCII character library......o, 710
11.36 srfi-178 - Bitvector library........ ... 713
11.37 srfi-180 - JOON L. 718
11.38 srfi-181 - CUStOm POTtS. ...ttt e e 721
11.39 srfi-185 - Linear adjustable-length strings............ o oL 724
11.40 srfi-189 - Maybe and Either: optional container types........................ 725
11.40.1 Types and predicateso e 725
11.40.2 COnSEIUCOTS . .ttt et et e e 726
11.40.3 ACCESSOTS . . o ettt e e et et e 727

11.40.4 Sequence OPETationsuu ettt eens 728

11.40.5 Protocol CONVETTETSottt e 729
11.40.6 Syntactic utilities. 731
11.40.7 Trivalent logic 733
11.41 srfi-192 - Port positioningcoouiiiii e 733
11.42 srfi-193 - Command line. i e 734
11.43 srfi-196 - Range objectsooi i e 734
11.44 srfi-197 - Pipeline operatorsooiiiiii i 735
11.45 srfi-217 - Integer SetS e 737
11.46 srfi-219 - Define higher-order lambda i i 741
11.47 srfi-221 - Generator/accumulator sub-library.............. 741
11.48 srfi-229 - Tagged procedures.couuuiiimii i 743
12 Library modules - Utilities 744
12.1 binary.io- Binary I/Oo 744
12.2 binary.pack - Packing binary data........ 747
12.3 compat.chibi-test - Running Chibi-scheme test suite............... 750
12.4 compat.norational - Rational-less arithmetic.............. 750
12.5 control.cseq - Concurrent SEQUENCESiutintiutint i, 751
12.6 control.future - Futures. 752
12.7 control.job - A common job descriptor for control modules.................... 753
12.8 control.pmap - Parallel map ... 754
12.9 control.scheduler - Scheduler....... i i 756
12.10 control.thread-pool - Thread pools........... o it 757
12.11 crypt.bcrypt - Password hashing........... o i i 759
12.12 data.cache - Cache. ... i 759
12.13 data.heap - Heapo 763
12.14 data.ideque - Immutable deques......... i 765
12.15 data.imap - Immutable map 766
12.16 data.priority-map - Priority map.......... .o 767
12.17 data.queue - QUEUE. . ..ottt 768
12.18 data.random - Random data generatorso, 772
12.19 data.range - Range............o o
12.20 data.ring-buffer - Ring buffer........ 781
12.21 data.skew-list - Skew binary random-access lists 783
12.22 data.sparse - Sparse data containersciiiiiiii i 785
12221 SPATSE VECTOTS . ..t ettt ettt et ettt et e e e 786
12.22.2 SParse MatTiXeS ..o oottt ettt et et e e e 788
12.22.3 Sparse tableso 790
12.23 data.trie - Triet 791
12.24 dbi - Database independent access layer, 795
12.24.1 DBI user API 795
12.24.2 Writing drivers for DBI. 799
12.25 dbm - Generic DBM interface 801
12.25.1 Opening and closing a dbm database............ot 802
12.25.2 Accessing a dbm database 803
12.25.3 Tterating on a dbm database........... ... o i i 804
12.25.4 Managing dbm database instance............., 804
12.25.5 Dumping and restoring dbm database.............. oL 805
12.25.6 Writing a dbm implementation i 805
12.26 dbm.fsdbm - File-system dbm........ 806
12.27 dbm.gdbm - GDBM interface......... ... 806
12.28 dbm.ndbm - NDBM interface....... ..o 808
12.29 dbm.odbm - Original DBM interface............o i i 809

12.30 file.filter - Filtering file content.......... 810

12.31 file.util - Filesystem utilities i 811
12.31.1 Directory utilities.cooiiii 811
12.31.2 Pathname utilities....... ... 814
12.31.3 File attribute utilities. 816
12.31.4 File 0perationst e 818
12.31.5 Temporary files and directories, 820
12.31.6 Lock filles. . ot 821

12.32 math.const - Mathematic constants........... i 823

12.33 math.mt-random - Mersenne Twister Random number generator 823

12.34 math.prime - Prime numbers......... ... 824

12.35 os.windows - Windows SUPPOTtt 827
12.35.1 Windows dialogs.o 827
12.35.2 Windows console APT 827

12.36 parser.peg - PEG parser combinators......... ..., 831
12.36.1 Walkthrough o e 831
12.36.2 Parser drivers e 836
12.36.3 What is a PEG parser, really? 838
12.36.4 Primitive parser builders. i 839
12.36.50 RODES ..t 841
12.36.6 Choice, backtrack and assertion combinators.............................. 841
12.36.7 Sequencing combinatorsot 842
12.36.8 Repetition combinators. ... 844
12.36.9 Miscellaneous combinators. i 845
12.36.10 Performance.o 846

12.37 rfc.822 - RFC822 message Parsing........oouuuttintieenniie i, 846

12.38 rfc.baseb4 - Base64 encoding/decoding., 850

12.39 rfc.cookie - HTTP cookie handling o i 850

1240 rfc.ftp- FTP client..... ..o oo 852

12.41 rfc.hmac - HMAC keyed-hashing....... i 854

12,42 rfc.http - HI TP .o 855

12.43 rfc.icmp - ICMP packetso 860

12,44 rfc.ip-IP packetso 861

12.45 rfc.json - JSON parsing and construction, 862

12.46 rfc.mdb5 - MD5 message digest 864

12.47 rfc.mime - MIME message handling.................. . i i i, 864

12.48 rfc.quoted-printable - Quoted-printable encoding/decoding................. 870

12.49 rfc.sha - SHA message digest.......coooiiuiimiiii i 870

12.50 rfc.tls - Transport layer security........ ..o 871

12.51 rfc.uri - URI parsing and construction.............. ..., 874

12.52 rfc.uuid - UUID ... e 879

12.53 rfc.zlib - zlib compression library......... o i 880

12.54 slib - SLIB interface.o e 883

12.55 sxml.ssax - Functional XML parser............ i, 884
12.55.1 SSAX data byPeS - .t vttt et 884
12.55.2 SSAX low-level parsing code....... ... 887
12.55.3 SSAX higher-level parsers and scanners..............c...ocooiiiiiiii.. 891
12.55.4 SSAX Highest-level parsers - XML to SXML.......... 892

12.56 sxml.sxpath - SXML query language. ..., 894
12.56.1 SXPath basic converters and applicators............. ... il 895
12.56.2 SXPath query language.ouiu it e 898
12.56.3 SXPath extension 900

12.57 sxml.tools - Manipulating SXML structure............. ... i, 902
12.57.1 SXML predicatest 903

12.57.2 SXML GCCESSOTS .« o vttt ettt e e e e e e e e 903

12.57.3 SXML modiflersouti 905
12.57.4 SXPath auxiliary utilities. 906
12.57.5 SXML to markup conversion.ouiiiieiiiiieaiiiieanae... 907
12.58 sxml.serializer - Serializing XML and HTML from SXML 908
12.58.1 Simple SXML serializingoouuiiiiii i 908
12.58.2 Custom SXML serializing.ot 908
12.59 text.console - Text terminal control i 910
12.60 text.csv - CSV tableso 913
12.61 text.diff - Calculate difference of text streams............... 916
12.62 text.edn - EDN parsing and construction....................oooiiiiii.. 918
12.63 text.external-editor - Running external editor 921
12.64 text.gap-buffer - Gap buffer....... 922
12.65 text.gettext - Localized messages. ... 924
12.66 text.html-lite - Simple HTML document construction....................... 926
12.67 text.pager - Display with pager.......o i 928
12.68 text.parse - Parsing input stream.......... i 928
12.69 text.progress - Showing progress on text terminals................. 930
12.70 text.sql - SQL parsing and construction............. ... i, 932
12.71 text.template - Simple template expander............ i 932
12.72 text.tr - Transliterate characters........... 933
12.73 text.tree - Lazy text construction........... ... o i i 935
12.74 util.combinations - Combination library.........o il 936
12.75 util.digest - Message digester framework L. 937
12.76 util.dominator - Calculate dominator tree o ... 938
12.77 util.isomorph - Determine isomorphism.......... L. 939
12.78 wutil.lcs - The longest common subsequence............... ..., 940
12.79 util.levenshtein - Levenshtein edit distance............... 943
12.80 wutil.match - Pattern matching........ 944
12.81 wutil.record - SLIB-compatible record type...........cooiiiiiiiiiii i, 949
12.82 wutil.relation - Relation framework....... i 950
12.83 wutil.stream - Stream library 952
12.83.1 Stream primitives.t 952
12.83.2 Stream CONStIUCTOTSttt e e e 953
12.83.3 Stream bindingo 956
12.83.4 SEream CONSUINETSttt ettt et et e et 957
12.83.5 Stream Operationsoiiut et e 958
12.84 util.toposort - Topological sorto 962
12.85 wutil.unification - Unification......... ... 962
12.86 www.cgl - CGL utility ..o 963
12.87 www.cgi.test - CGl testing. 968
12.88 www.css - CSS parsing and construction......... i 969
Appendix A C to Scheme mapping........................... 972
Appendix B Function and Syntax Index..................... 983
Appendix C Module Index........................ ... 1030
Appendix D Lexical syntax index 1033

Appendix E ClassIndex 1034

Appendix F Variable Index

1 Introduction

This is a users’ guide and reference manual of the Gauche Scheme. Here I tried to describe the
implementation precisely, sometimes referring to background design choices.

The target readers are those who already know Scheme and want to write useful programs
in Gauche. For those who are new to Scheme, it’ll be easier to start from some kind of tutorial.
I'm planning to write one.

This manual only deals with Scheme side of things. Gauche has another face, a C interface.
Details of it will be discussed in a separate document. See gauche-dev.texi in the source
distribution for the work-in-progress of such document. Those who want to use Gauche as an
embedded language, or want to write an extension, need that volume.

For the Scheme side, I tried to make this manual self-contained for the reader’s convenience,
i.e. as far as you want to look up Gauche’s features you don’t need to refer to other documents.
For example, description of functions defined in the standard documents are included in this
manual, instead of saying “see the standard document”. However, this document is not a
verbatim copy of the standard documents; sometimes I omit detailed discussions for brevity.
I put pointers to the original documents, so please consult them if you need to refer to the
standards.

If you're reading this document off-line, you may find the most recent version on the web:
https://practical-scheme.net/gauche/.

1.1 Overview of Gauche

Gauche is a Scheme script engine; it reads Scheme programs, compiles it on-the-fly and executes
it on a virtual machine. Gauche conforms the language standard "Revised~7 Report on the
Algorithmic Language Scheme" (https://bitbucket.org/cowan/r7rs/raw/tip/rnrs/r7rs.
pdf), and supports various common libraries defined in SRFIs (https://srfi.schemers.org).

The goal of Gauche is to provide a handy tool for programmers and system administrators
to handle daily works conveniently and efficiently in the production environment.

There are lots of Scheme implementations available, and each of them has its design emphasis
and weaknesses. Gauche is designed with emphasis on the following criteria.

Quick startup
One of the situation Gauche is aiming at is in the production environment, where you
write ten-lines throw-away script that may invoked very frequently. This includes
CGI scripts as well. Gauche provides frequently used common features as a part
of rich built-in functions or precompiled Scheme libraries that can be loaded very
quickly.

Fully utilizing multi-core
Gauche supports native threads on most platforms. The internals are fully aware
of preemptive/concurrent threads (that is, no “giant global lock”), so that you can
utilize multiple cores on your machine.

Multibyte strings
We can no longer live happily in ASCII-only or 1-byte-per-character world. The
practical language implementations are required to handle multibyte (wide) char-
acters. Gauche supports multibyte strings natively, providing robust and consis-
tent support than ad hoc library-level implementation. See Section 2.2 [Multibyte
strings], page 12, for details.

Integrated object system
A powerful CLOS-like object system with MetaObject protocol (mostly compatible
with STklos and Guile) is provided.

https://practical-scheme.net/gauche/
https://bitbucket.org/cowan/r7rs/raw/tip/rnrs/r7rs.pdf
https://bitbucket.org/cowan/r7rs/raw/tip/rnrs/r7rs.pdf
https://srfi.schemers.org

Chapter 1: Introduction 2

System interface
Although Scheme abstracts lots of details of the machine, sometimes you have to
bypass these high-level layers and go down to the basement to make things work.
Gauche has built-in support of most of POSIX.1 system calls. Other modules, such
as networking module, usually provide both high-level abstract interface and low-
level interface close to system calls.

Enhanced 1I/0
No real application can be written without dealing with I/0O. Scheme neatly ab-
stracts I/O as a port, but defines least operations on it. Gauche uses a port object
as a unified abstraction, providing utility functions to operate on the underlying I/O
system. See Section 6.21 [Input and output], page 240, for the basic I/O support.

Extended language
Gauche is not just an implementation of Scheme; it has some language-level en-
hancements. For example, lazy sequences allows you to have lazy data structures
that behaves as if they’re ordinary lists (except that they’re realized lazily). It is
different from library-level lazy structure implementation such as streams (srfi-41),
in a sense that you can use any list-processing procedures on lazy sequences. It
enables programs to use lazy algorithms more liberally.

1.2 Notations

1.2.1 Entry format

In this manual, each entry is represented like this:

foo argl arg2 [Category]
[spec]{module} Description of foo ...

Category denotes the category of the entry foo. The following categories will appear in this
manual:

Function A Scheme function.

Special Form A special form (in the R7RS term, “syntax”).
Macro A macro.

Module A module

Class A class.

Generic Function A generic function

Method A method

Reader Syntax
Parameter

Generic application

Subprocess argument

EC Qualifier

A lexical syntax that is interpreted by the reader.

A parameter, which is a procedure that follows a certain
protocol and used to manipulate the dynamic environ-
ment. See Section 6.16 [Parameters|, page 219, for the
details.

In Gauche, you can “apply” a non-procedure object to
arguments as if it is a procedure (see Section 6.15.6
[Applicable objects], page 215, for the details). This
entry explains the behavior of an object applied to
arguments.

This appears in do-process and run-process to ex-
plain their keyword argument (see Section 9.26.1 [Run-
ning subprocess|, page 456)

This is for SRFI-42 Eager Comprehension qualifiers.
(see Section 11.10 [Eager comprehensions|, page 670).

Chapter 1: Introduction 3

For functions, special forms and macros, the entry may be followed by one or more arguments.
In the argument list, the following notations may appear:

arg ... Indicates zero or more arguments.

:optional xy z

toptional (x x-default) (y y-default) z
Indicates it may take up to three optional arguments. The second form specifies
default values to x and y. This is Gauche’s enhancement to Scheme; see Section 4.3
[Making procedures], page 46, for the definition of complete argument list syntax.

tkeyxyz

:key (x x-default) (y y-default) z
Indicates it may take keyword arguments x, y and z. The second form shows the
default values for x and y. This is also Gauche’s enhancement to Scheme; see
Section 4.3 [Making procedures|, page 46, for the definition of complete argument
list syntax.

:rest args
Indicates it may take rest arguments. This is also Gauche’s enhancement to Scheme;
see Section 4.3 [Making procedures|, page 46, for the definition of complete argument
list syntax.

Following the entry line, we may indicate the specification the entry comes from, and/or the
module the entry is provided when it’s not built-in.

The specification is shown in brackets. You’ll see the following variations.

[R7RS], [R7RS library]
It is defined in R7RS. If the entry is about a procedure, a syntax or a macro, library
is also shown to indicate the name is exported from the scheme.library module
(or the (scheme library) library, in R7RS terms).

[R7TRS+], [RTRS+ library]
It is defined in R7RS, but extended by Gauche, e.g. accepting more optional argu-
ments or different type of arguments. The description contains how it is extended
from R7RS. When you’re writing a portable program, you need to be careful not to
use Gauche-specific features.

[R6RS], [R6RS+], [R5RS], [R5RS+]
It is defined in R6RS or R5RS. The plus sign means it has extended by Gauche.
Since R7RS is mostly upward-compatible to R5RS, and has a lot in common with
R6RS, we mark an entry as R5RS or R6RS only if it is not a part of R7RS.

[SRFI-n], [SRFI-n+]
The entry works as specified in SRFI-n. If it is marked as "[SRFI-n+]", the entry
has additional functionality.

[POSIX] The API of the entry reflects the API specified in POSIX.

The module is shown in curly-braces. If the module isn’t shown, it is built-in for Gauche.
(Note: When you’re writing R7RS code, Gauche built-ins are available through (gauche base)
module, see Section 9.2 [Importing gauche built-ins|, page 350).

Some entries may be available from more than one modules through re-exporting or module
inheritance. We only list the primary module in that case.

Here’s an actual entry for an example:

-- Function: utf8->string u8vector :optional start end
[R7RS base] {gauche.unicode} Converts a sequence of utf8 octets in

Chapter 1: Introduction 4

UBVECTOR to a string. Optional START and/or END argument(s) will
limit the range of the input.

This shows the function utf8->string is specified by R7RS, in (scheme base) library.
Gauche originally provides it from gauche.unicode module. You can import the function from
either one, but in general, it’s good to use (import (scheme base)) when writing R7RS code,
and (use gauche.unicode) when writing Gauche code. See Section 10.1 [R7RS integration],
page 542, for the details of differences in writing in R7TRS and Gauche.

1.2.2 Names and namespaces

Since R6RS, you can split toplevel definitions of Scheme programs into multiple namespaces. In
the standards such namespaces are called libraries. Gauche predates R6RS and has been calling
them modules, and we use the latter throughout this manual.

(Note: RnRS libraries are more abstract concept than Gauche’s modules; RnRS defines
libraries in a way that they can be implemented in various ways, and it just happens that
Gauche realises the library semantics using modules. When you write a portable R7RS library,
be aware not to rely on Gauche-specific module semantics. Especially, RnRS libraries are more
static than Gauche modules; you cannot add definitions to exiting libraries within RnRS, for
example.)

Sometimes the same name is used for multiple definitions in different modules. If we need
to distinguish those names, we prefix the name with the module name and a hash sign. For
example, gauche#lambda means lambda defined in gauche module. This does not mean you
can write gauche#lambda in the source code, though: This notation is just for explanation.

2 Concepts

In this chapter I describe a few Gauche’s design concepts that help you to understand how
Gauche works.

2.1 Standard conformance

Gauche conforms “Revised~7 Report of Algorithmic Language Scheme,” (R7RS) including op-
tional syntax and procedures. We cover R7RS small language (see Section 10.2 [R7RS small
language], page 546), as well as part of R7TRS large libraries (see Section 10.3 [R7TRS large],
page 555).
e Gauche has a special kind of symbols, called keywords. They’re symbols with its name
beginning with a colon (e.g. :key), but behaves as if it is automatically bound to itself.
See Section 6.8 [Keywords]|, page 150, for the details. Keywords are used extensively when
passing so-called keyword arguments (see Section 4.3 [Making procedures|, page 46).

e Continuations created in a certain situation (specifically, inside a Scheme code that is called
from external C routine) have limited extent (See Section 6.15.7 [Continuations], page 216,
for details).

e Full numeric tower (integer, rational, real and complex numbers) are supported, but ratio-
nals are only exact, and complex numbers are always inexact.

Note that, since Gauche predates R7TRS, most existing Gauche source code doesn’t follow
the R7RS program/library structure. Gauche can read both traditional Gauche modules/scripts
and R7RS programs/libraries seamlessly. See Chapter 10 [Library modules - R7RS standard
libraries|, page 542, for the details of how R7RS is integrated into Gauche.

Gauche also supports the following SRFIs (Scheme Request for Implementation).

SRFI-0, Feature-based conditional expansion construct.
This has become a part of R7TRS small. Gauche supports this as Built-in. See
Section 4.12 [Feature conditional], page 72.

SRFI-1, List library (R7RS lists)
This has become a part of R7TRS large. See Section 10.3.1 [R7RS lists], page 555.
(Some of SRFI-1 procedures are built-in).

SRFI-2, AND-LET*: an AND with local bindings, a guarded LET* special form.
Supported natively. See Section 4.6 [Binding constructs], page 56.

SRFI-4, Homogeneous numeric vector datatypes.
The module gauche.uvector provides a superset of srfi-4 procedures, including
arithmetic operations and generic interface on the SRFI-4 vectors. See Section 6.13.2
[Uniform vectors|, page 191.

SRFI-5, A compatible let form with signatures and rest arguments
Supported by the module srfi-5. See Section 11.3 [A compatible let form with
signatures and rest arguments], page 650.

SRFI-6, Basic String Ports.
This has become a part of R7RS small. Gauche supports this as built-in. See
Section 6.21.5 [String ports], page 248.

SRFI-7, Feature-based program configuration language
Supported as an autoloaded macro. See Section 11.4 [Feature-based program con-
figuration language], page 651.

SRFI-8, receive: Binding to multiple values.
Syntax receive is built-in. See Section 4.6 [Binding constructs], page 56.

Chapter 2: Concepts 6

SRFI-9, Defining record types.
Supported by the module gauche.record. See Section 9.27 [Record types],
page 469.

SRFI-10, Sharp-comma external form.
Built-in. See Section 6.21.7.3 [Read-time constructor|, page 254.

SRFI-11, Syntax for receiving multiple values.
This has become a part of R7RS small. Gauche supports it as built-in. See
Section 4.6 [Binding constructs], page 56.

SRFI-13, String library
Supported by the module srfi-13. See Section 11.5 [String library], page 652.
(Some of SRFI-13 procedures are built-in).

SRFI-14, Character-set library
This has become a part of R7TRS large. Character-set object and a few procedures
are built-in. See Section 6.10 [Character sets|, page 159. Complete set of SRFI-14
is supported by the module scheme.charset. See Section 10.3.6 [R7RS character
sets], page 576.

SRFI-16, Syntax for procedures of variable arity (case-lambda)
This has become a part of R7TRS small. Built-in. See Section 4.3 [Making proce-
dures], page 46.

SRFI-17, Generalized set!
Built-in. See Section 4.4 [Assignments|, page 51.

SRFI-18, Multithreading support
Some SRFI-18 features are built-in, and the rest is in gauche.threads module. See
Section 9.34 [Threads|, page 495.

SRFI-19, Time Data Types and Procedures.
Time data type is Gauche built-in (see Section 6.24.9 [Time], page 294). Complete
set of SRFI-19 is supported by the module srfi-19. See Section 11.6 [Time data
types and procedures], page 660.

SRFI-22, Running Scheme scripts on Unix
Supported. See Section 3.3 [Writing Scheme scripts], page 29.

SRFI-23, Error reporting mechanism.
This has become a part of R7RS small. Built-in. See Section 6.19.2 [Signaling
exceptions], page 230.

SRFI-25, Multi-dimensional array primitives.
Supported by the module gauche.array, which defines superset of SRFI-25. See
Section 9.1 [Arrays|, page 343.

SRFI-26, Notation for specializing parameters without currying.
Built-in. See Section 4.3 [Making procedures|, page 46.

SRFI-27, Sources of Random Bits.
Supported by the module srfi-27. See Section 11.7 [Sources of random bits],
page 666.

SRFI-28, Basic format strings.
Gauche’s built-in format procedure is a superset of SRFI-28 format. See
Section 6.21.8 [Output], page 255.

SRFI-29, Localization
Supported by the module srfi-29. See Section 11.8 [Localization], page 667.

Chapter 2: Concepts 7

SRFI-30, Nested multi-line comments.
This has become a part of R7TRS small. Supported by the native reader. See
Section 4.1 [Lexical structure], page 42.

SRFI-31, A special form rec for recursive evaluation. Built-in.
See Section 4.6 [Binding constructs|, page 56.

SRFI-34, Exception Handling for Programs
This has become a part of R7TRS small. Built-in. See Section 6.19 [Exceptions],
page 227.

SRFI-35, Conditions
Built-in. See Section 6.19.4 [Conditions|, page 235.

SRFI-36, I/O Conditions
Partly supported. See Section 6.19.4 [Conditions|, page 235.

SRFI-37, args-fold: a program argument processor
Supported by the module srfi-37. See Section 11.9 [A program argument proces-
sor|, page 668.

SRFI-38, External Representation for Data With Shared Structure
Built-in. See Section 6.21.7.1 [Reading datal, page 251, and Section 6.21.8 [Output],
page 255.

SRFI-39, Parameter objects
This has become a part of R7RS small. Built-in (see Section 6.16 [Parameters],
page 219).

SRFI-40, A Library of Streams
Supported by the module util.stream. See Section 12.83 [Stream library],
page 952.

SRFI-41, Streams
This has become a part of R7RS large. See Section 10.3.14 [R7RS stream]|, page 596.
Most of stream procedures are also in util.stream (see Section 12.83 [Stream
library|, page 952).

SRFI-42, Eager comprehensions
Supported by the module srfi-42. See Section 11.10 [Eager comprehensions],
page 670.

SRFI1-43, Vector library
Supported by the module srfi-43. See Section 11.11 [Vector library (Legacy)],
page 676. Note that this srfi is superseded by R7RS scheme.vector library (for-
merly known as srfi-133). See Section 10.3.2 [R7RS vectors], page 559.

SRFI-45, Primitives for Expressing Iterative Lazy Algorithms
Built-in. See Section 6.18 [Lazy evaluation], page 222.

SRFI-46, Basic Syntax-rules Extensions
This has become a part of R7TRS small. Built-in. See Section 5.2 [Hygienic macros|,
page 87.

SRFI-55, require-extension
Supported as an autoloaded macro. See Section 11.12 [Requiring extensions],
page 677.

SRFI-60, Integers as bits
Most procedures are built-in: See Section 10.3.22 [R7RS bitwise operations],
page 625. The complete support is in srfi-60 module: See Section 11.13 [Inte-
gers as bits], page 677.

Chapter 2: Concepts 8

SRFI-61, A more general cond clause
Supported natively. See Section 4.5 [Conditionals], page 53.

SRFI-62, S-expression comments
This has become a part of R7TRS small. Supported by the native reader. See
Section 4.1 [Lexical structure], page 42.

SRFI-64, A Scheme API for test suites
Supported by the module srfi-64. See Section 11.14 [A Scheme API for test suites],
page 679.

SRFI-66, Octet vectors
Supported by the module srfi-66 (see Section 11.15 [Octet vectors], page 679).
This is mostly a subset of gauche.uvector, but has one slight difference.

SRFI-69, Basic hash tables
Supported by the module srfi-69 (see Section 11.16 [Basic hash tables], page 680).
Note that this srfi is superseded by R7RS scheme.hash-table library (formerly
known as srfi-125). See Section 10.3.7 [R7RS hash tables]|, page 580.

SRFI-74, Octet-addressed binary blocks
Supported by the module srfi-74 (see Section 11.17 [Octet-addressed binary
blocks|, page 682).

SRFI-78, Lightweight testing
Supported by the module srfi-78. It can work with gauche.test. See
Section 11.18 [Lightweight testing], page 684.

SRFI-87, => in case clauses
This has become a part of R7RS small. Supported natively. See Section 4.5 [Con-
ditionals], page 53.

SRFI-95, Sorting and merging
Supported natively. See Section 6.23 [Sorting and merging], page 269.

SRFI1-96, SLIB Prerequisites
This srfi is not exactly a library, but rather a description of features the platform
should provide to support SLIB. In order to load this module, SLIB must be already
installed. See Section 12.54 [SLIB], page 883, for the details.

SRFI-98, An interface to access environment variables
Supported by the module srfi-98. See Section 11.19 [Accessing environment vari-
ables], page 685.

SRFI-99, ERR5RS Records
Supported by the module gauche.record. See Section 9.27 [Record types],
page 469.

SRFI-101, Purely functional random-access pairs and lists
This has become a part of R7TRS large. Supported by the module scheme.rlist.

SRFI-106, Basic socket interface
Supported by the module srfi-106. See Section 11.21 [Basic socket interface],
page 686.

SRFI-111, Boxes
This has become a part of R7TRS large as scheme.box. Gauche has it as built-in.
See Section 6.17 [Boxes|, page 221.

Chapter 2: Concepts 9

SRFI-112, Environment inquiry
Supported by the module srfi-112. See Section 11.22 [Portable runtime environ-
ment inquiry|, page 689.

SRFI-113, Sets and Bags
This has become a part of R7TRS large. Supported by the module scheme.set. See
Section 10.3.5 [R7RS sets], page 568.

SRFI-114, Comparators
Some of the features are built-in (see Section 6.2.4 [Basic comparators], page 112).
Full srfi spec is supported by the module srfi-114 (see Section 11.23 [Comparators],
page 689).

SRFI-115, Scheme Regular Expressions
This has become a part of R7RS large. Supported by the module scheme.regex.
See Section 10.3.19 [R7RS regular expressions], page 601.

SRFI-116, Immutable List Library
This has become a part of R7TRS large. Immutable pairs are supported natively
(see Section 6.6.2 [Mutable and immutable pairs|, page 135). Full set of APIs are
available in the module scheme.ilist (see Section 10.3.8 [R7RS immutable lists],
page 583).

SRFI-117, Queues based on lists.
This has become a part of R7RS large. Supported by the module
scheme.list-queue, which is implemented on top of data.queue. (see
Section 10.3.16 [R7RS list queues], page 597)

SRFI-118, Simple adjustable-size strings
Supported by the module srfi-118. (see Section 11.24 [Simple adjustable-size
strings|, page 694)

SRFI-120, Timer APIs
Supported by the module srfi-120 (see Section 11.25 [Timer APIs], page 695). It
is a wrapper of control.scheduler (see Section 12.9 [Scheduler|, page 756).

SRFI-121, Generators
This has become a part of R7TRS large. Gauche’s gauche.generator is superset of
srfi-121 (see Section 9.11 [Generators|, page 403).

SRFI-124, Ephemerons
This has become a part of R7RS large. Supported by scheme.ephemeron. Note:
Current Gauche’s implementation isn’t optimal. See Section 10.3.17 [R7RS
ephemerons], page 600.

SRFI-125, Intermediate hash tables
This has become a part of R7TRS large. Supported by scheme.hash-table (see
Section 10.3.7 [R7RS hash tables|, page 580). Note that Gauche’s native interface
provides the same functionalities, but under slightly different names for the back-
ward compatibility. See Section 6.14.1 [Hashtables|, page 197.

SRFI-127, Lazy sequences
This has become a part of R7RS large. Supported by scheme.lseq (see
Section 10.3.13 [R7RS lazy sequences], page 594).

SRFI-128, Comparators (reduced)
This has become a part of R7TRS large. Built-in. See Section 6.2.4 [Basic compara-
tors], page 112, for the details.

Chapter 2: Concepts 10

SRFI-129, Titlecase procedures
The procedures char-title-case? and char-titlecase are built-in, and
string-titlecase is in gauche.unicode. For the compatibility, you can (use
srfi-129) or (import (srfi 129)) to get these three procedures.

SRFI-130, Cursor-based string library
String cursors are supported natively (see Section 6.11.5 [String cursors], page 168).
Most of built-in and srfi-13 string procedures accept cursors in addition to indexes.
The module srfi-130 provides several procedures that has the same name as srfi-13
but returns a string cursor instead of an index (see Section 11.27 [Cursor-based
string library|, page 697).

SRFI-131, ERR5RS Record Syntax (reduced)
This srfi is a pure subset of srfi-99, and gauche.record’s define-record-type
covers it. See Section 9.27 [Record types|, page 469.

SRFI-132, Sort libraries
This has become a part of R7RS large. Supported by the module scheme.sort. See
Section 10.3.4 [R7RS sort|, page 564.

SRFI-133, Vector library (R7RS-compatible)
This has become a part of R7TRS large. Supported by the module scheme.vector.
See Section 10.3.2 [R7RS vectors|, page 559.

SRFI-134, Immutable Deques
This has become a part of R7TRS large. The module data.ideque is compatible to
srfi-134. See Section 12.14 [Immutable deques|, page 765.

SRFI-135, Immutable Texts
This has become a part of R7TRS large. In Gauche, the text type is not disjoint from
the string type. Instead, a text is simply an immutable and indexed string. See
Section 6.11.6 [String indexing], page 170, for the detail of indexed string. The API
is described in Section 10.3.11 [R7RS immutable texts|, page 588.

SRFI-141, Integer division
This has become a part of R7TRS large. Supported by the module scheme.division.
See Section 10.3.21 [R7RS integer division], page 624.

SRFI-143, Finxums
This has become a part of R7TRS large. Supported by the module scheme. fixnum.
See Section 10.3.23 [R7RS fixnum]|, page 629.

SRFI-144, Flonums
This has become a part of R7TRS large. Supported by the module scheme. flonum.
See Section 10.3.24 [R7RS flonum]|, page 631.

SRFI-145, Assumptions
Built-in. See Section 4.5 [Conditionals|, page 53.

SRFI-146, Mappings
This has become a part of R7TRS large. Supported by the module scheme.mapping.
See Section 10.3.20 [R7RS mappings|, page 613.

SRFI-149, Basic syntax-rules template extensions
The built-in syntax-rules support srfi-149.

SRFI-151, Bitwise operations
Supported by the module srfi-151 (see Section 10.3.22 [R7RS bitwise opera-
tions], page 625). Note that many equivalent procedures are provided built-in (see
Section 6.3.6 [Basic bitwise operations]|, page 131).

Chapter 2: Concepts 11

SRFI-152, String library (reduced)
Supported by the module srfi-152 (see Section 11.28 [String library (reduced)],
page 698).

SRFI-154, First-class dynamic extents
Suppored by the module srfi-154. (see Section 11.29 [First-class dynamic extents],
page 701).

SRFI-158, Generators and accumulators
This has become a part of R7RS large. Supported by the module scheme. generator
(see Section 10.3.12 [R7RS generators|, page 592). Note that most of generator
procedures are supported by gauche.generator (see Section 9.11 [Generators],
page 403).

SRFI-159, Combinator Formatting
This has become a part of R7TRS large. See Section 10.3.26 [R7RS combinator
formatting], page 642.

SRFI-160, Homogeneous numeric vector libraries
This has become a part of R7RS large, supported by the module scheme.vector.®@
where @ is one of base, u8, s8, ul6, s16, u32, s32, ub4, s64, £32, f64, c64, or c128
(see Section 10.3.3 [R7RS uniform vectors], page 564).

SRFI-162, Comparators sublibrary
Supported by the module srfi-162. See Section 11.31 [Comparator sublibrary],
page 702.

SRFI-170, POSIX API
Supported by the module srfi-170. See Section 11.32 [POSIX API], page 702.

SRFI-173, Hooks
Supported by the module srfi-173 (see Section 11.33 [Hooks (srfi)], page 708),
which is a thin layer on top of gauche.hook (see Section 9.12 [Hooks], page 415)

SRFI-174, POSIX Timespecs
Supported by the module srfi-174 (see Section 11.34 [POSIX timespecs], page 709).
In Gauche, the timespec type is the same as built-in <time> object, which is also
the same as srfi-19 time.

SRFI-175, ASCII character library
Supported by the module srfi-175 (see Section 11.35 [ASCII character library],
page 710).

SRFI-176, Version flag
Supported as a command-line flag of gosh. The version-alist procedure is built-
in.

SRFI-178, Bitvector library
The basic support is built-in (see Section 6.13.3 [Bitvectors|, page 194). Complete
support is in the module srfi-178 (see Section 11.36 [Bitvector library|, page 713.

SRFI-180, JSON
Supported by the module srfi-180 (see Section 11.37 [JSON], page 718). Note
that Gauche also has rfc. json, and srfi-180 is implemented on top of it.

SRFI-181, Custom ports
Supported by the module srfi-181 (see Section 11.38 [Custom ports|, page 721).
Gauche has an original custom port mechanism (see Section 9.39 [Virtual ports],
page 534), and This srfi is built in top of it.

Chapter 2: Concepts 12

SRFI-185, Linear adjustable-length strings
Supported by the module srfi-185. See Section 11.39 [Linear adjustable-length
strings|, page 724.

SRFI-189, Maybe and Either: optional container types
Supported by the module srfi-189.

SRFI-192, Port positioning
Gauche’s port already has positining mechanism, so main procedures are built-in
(see Section 6.21.3 [Common port operations|, page 241). A few additional proce-
dures are provided by the module srfi-192 (see Section 11.41 [Port positioning],
page 733).

SRFI-193, Command line
Two procedures, command-line and script-file, are built-in. Other APIs are
provided by the module srfi-193 (see Section 11.42 [Command line], page 734).

SRFI-195, Multiple-value boxes
Built-in. See Section 6.17 [Boxes|, page 221.

SRFI-196, Range objects
Suppored by the module srfi-196. Also the data.range module is the superset of
this srfi (see Section 12.19 [Range], page 777).

SRFI-197, Pipeline operators
Supported by the module srfi-197 (see Section 11.44 [Pipeline operators],
page 735).

SRFI-217, Integer sets
Supported by the module srfi-217 (see Section 11.45 [Integer sets|, page 737).

SRFI-219, Define higher-order lambda
Gauche’s built-in define (both R7RS-compatible one and extended one) sup-
ports this feature. If you import srfi-219 explicitly, it imports null#define. See
Section 11.46 [Define higher-order lambda], page 741, for the details.

SRFI-221, Generator/accumulator sub-library
Supported by the module srfi-221 (see Section 11.47 [Generator/accumulator sub-
library], page 741).

SRFI1-229, Tagged procedures
Supported by the module srfi-229 (see Section 11.48 [Tagged procedures],
page 743).

2.2 Multibyte strings

Traditionally, a string is considered as a simple array of bytes. Programmers tend to imagine
a string as a simple array of characters (though a character may occupy more than one byte).
It’s not the case in Gauche.

Gauche supports multibyte string natively, which means characters are represented by vari-
able number of bytes in a string. Gauche retains semantic compatibility of Scheme string, so
such details can be hidden, but it’ll be helpful if you know a few points.

A string object keeps a type tag and a pointer to the storage of the string body. The storage of
the body is managed in a sort of “copy-on-write” way—if you take substring, e.g. using directly
by substring or using regular expression matcher, or even if you copy a string by copy-string,
the underlying storage is shared (the “anchor” of the string is different, so the copied string is
not eq? to the original string). The actual string is copied only if you destructively modify it.

Chapter 2: Concepts 13

Consequently the algorithm like pre-allocating a string by make-string and filling it with
string-set! becomes extremely inefficient in Gauche. Don’t do it. (It doesn’t work with
mulitbyte strings anyway). Sequential access of string is much more efficient using string ports
(see Section 6.21.5 [String ports]|, page 248).

String search primitives such as string-scan (see Section 6.11.9 [String utilities], page 172)
and regular expression matcher (see Section 6.12 [Regular expressions], page 177) can return a
matched string directly, without using index access at all.

You can choose internal encoding scheme at the time of compiling Gauche. At runtime, a
procedure gauche-character-encoding can be used to query the internal encoding. At compile
time, you can use a feature identifier to check the internal encoding. (see Section 3.5 [Platform-
dependent features], page 32.) Currently, the following internal encodings are supported.

utf-8 UTF-8 encoding of Unicode. This is the default. The feature identifier
gauche. ces.utf8 indicates Gauche is compiled with this internal encoding.

euc-jp EUC-JP encoding of ASCII, JIS X 0201 kana, JIS X 0212 and JIS X 0213:2000
Japanese character set. The feature identifier gauche.ces.eucjp indicates Gauche
is compiled with this internal encoding.

sjis Shift-JIS encoding of JIS X 0201 kana and JIS X 0213:2000 Japanese character set.
For source-code compatibility, the character code between 0 and 0x7f is mapped to
ASCII. The feature identifier gauche.ces.sjis indicates Gauche is compiled with
this internal encoding.

none 8-bit fixed-length character encoding, with the code between 0 and 0x7f matches
ASCII. It’s up to the application to interpret the string with certain character en-
codings. The feature identifier gauche.ces.none indicates Gauche is compiled with
this internal encoding.

Conversions from other encoding scheme is provided as a special port. See Section 9.4
[Character code conversion|, page 367, for details.

The way to specify the encoding of source programs will be explained in the next section.

2.3 Multibyte scripts

You can use characters other than us-ascii not only in literal strings and characters, but in
comments, symbol names, literal regular expressions, and so on.

By default, Gauche assumes a Scheme program is written in its internal character encoding.
It is fine as far as you’re writing scripts to use your own environment, but it becomes a problem
if somebody else tries to use your script and finds out you're using different character encoding
than his/hers.

So, if Gauche finds a comment something like the following within the first two lines of the
program source, it assumes the rest of the source code is written in <encoding-name>, and does
the appropriate character encoding conversion to read the source code:

;3 coding: <encoding-name>
More precisely, a comment in either first or second line that matches a regular expression
#/coding[:=]\s*x([\w.-]1+)/ is recognized, and the first submatch is taken as an encoding
name. If there are multiple matches, only the first one is effective. The first two lines must not
contain characters other than us-ascii in order for this mechanism to work.

The following example tells Gauche that the script is written in EUC-JP encoding. Note
that the string "-*-" around the coding would be recognized by Emacs to select the buffer’s
encoding appropriately.

#!/usr/bin/gosh

Chapter 2: Concepts 14

;3 —*— coding: euc-jp —*-

. script written in euc-jp ...

Internally, the handling of this magic comment is done by a special type of port. See
Section 6.21.6 [Coding-aware ports|, page 250, for the details. See also Section 6.22.1 [Loading
Scheme file], page 264, for how to disable this feature.

2.4 Case-sensitivity

Historically, most Lisp-family languages are case-insensitive for symbols. Scheme departed from
this tradition since R6RS, and the symbols are read in case-sensitive way. (Note that symbols
have been case-sensitive internally even in R5RS Scheme; case-insensitivity is about readers.)

Gauche reads and writes symbols in case-sensitive manner by default, too. However, to
support legacy code, you can set the reader to case-insensitive mode, in the following ways:

Use #!fold-case reader directive
When Gauche sees a token #!fold-case during reading a program, the reader
switches to case-insensitive mode. A token #!no-fold-case has an opposite effect—
to make the reader case-sensitive. These tokens affect the port from which they are
read, and are in effect until EOF or another instance of these tokens are read. See
Section 4.1 [Lexical structure|, page 42, for more details on #! syntax. This is the
way defined in R6RS and R7RS.

Use -fcase-fold command-line argument
Alternatively, you can give a command-line argument -fcase-fold to the gosh
command (see Section 3.1 [Invoking Gosh|, page 18). In this mode, the reader
folds uppercase characters in symbols to lowercase ones. If a symbol name contains
uppercase characters, it is written out using |-escape (see Section 6.7 [Symbols],
page 149).

2.5 Integrated object system

Gauche has a STklos-style object system, similar to CLOS. If you have used some kind of object
oriented (OO) languages, you’ll find it easy to understand the basic usage:

; ;3 Defines a class point, that has x and y coordinate
(define-class point ()
((x :init-value 0)
(y :init-value 0))
)

(define-method move ((p point) dx dy)
(inc! (slot-ref p ’x) dx)
(inc! (slot-ref p ’y) dy))

(define-method write-object ((p point) port)
(format port "[point “a ~al"
(slot-ref p ’x)
(slot-ref p ’y)))

However, if you are familiar with mainstream OO languages but new to CLOS-style object
system, Gauche’s object system may look strange when you look deeper into it. Here I describe
several characteristics of Gauche object system quickly. See Chapter 7 [Object system]|, page 306,
for details.

Chapter 2: Concepts 15

Everything is an object (if you care)
You have seen this tagline for the other languages. And yes, in Gauche, everything is
an object in the sense that you can query its class, and get various meta information
of the object at run time. You can also define a new method on any class, including
built-in ones.

Note that, however, in CLOS-like paradigm it doesn’t really matter whether every-
thing is an object or not, because of the following characteristics:

Method is dispatched by all of its arguments.
Unlike other object-oriented languages such as C++, Objective-C, Python, Ruby,
etc., in which a method always belong to a single class, a Gauche method doesn’t
belong to a specific class.

For example, suppose you define a numeric vector class <num-vector> and a numeric
matrix class <num-matrix>. You can define a method product with all possible
combinations of those type of arguments:

(product <num-vector> <num-matrix>)
(product <num-matrix> <num-vector>)
(product <num-vector> <num-vector>)
(product <num-matrix> <num-matrix>)

(product <number> <num-vector>)
(product <number> <num-matrix>)
(product <number> <number>)

Each method belongs to neither <num-vector> class nor <num-matrix> class.

Since a method is not owned by a class, you can always define your own method on
the existing class (except a few cases that the system prohibits altering pre-defined
methods). The above example already shows it; you can make product method
work on the built-in class <number>. That is why I said it doesn’t make much sense
to discuss whether everything is object or not in CLOS-style object system.

To step into the details a bit, the methods are belong to a generic function, which
is responsible for dispatching appropriate methods.

Class is also an instance.
By default, a class is also an instance of class <class>, and a generic function is an
instance of class <generic>. You can subclass <class> to customize how a class is
initialized or how its slots are accessed. You can subclass <generic> to customize
how the applicable methods are selected, which order those methods are called, etc.
The mechanism is called metaobject protocol. Metaobject protocol allows you to
extend the language by the language itself.

To find examples, see the files 1lib/gauche/singleton.scm and
lib/gauche/mop/validator.scm included in the distribution. You can
also read lib/gauche/mop/object.scm, which actually defines how a class is
defined in Gauche. For more details about metaobject protocol, see Gregor
Kiczales, Jim Des Rivieres, Daniel Bobrow, The Art of Metaobject Protocol, The
MIT Press.

Class doesn’t create mamespace
In the mainstream OO language, a class often creates its own namespace. This isn’t
the case in CLOS-style object system. In Gauche, a namespace is managed by the
module system which is orthogonal to the object system.

2.6 Module system

Gauche has a simple module system that allows modularized development of large software.

Chapter 2: Concepts 16

A higher level interface is simple enough from the user’s point of view. It works like this:
When you want to use the features provided by module foo, you just need to say (use foo) in
your code. This form is a macro and interpreted at compile time. Usually it loads the files that
defines foo’s features, and imports the external APIs into the calling module.

The use mechanism is built on top of two independent lower mechanisms, namespace separa-
tion and file loading mechanism. Those two lower mechanisms can be used separately, although
it is much more convenient when used together.

The use mechanism is not transitive; that is, if a module B uses a module A, and a module
C uses the module B, C doesn’t see the bindings in A. It is because B and A is not in the
is-a relationship. Suppose the module A implements a low-level functionality and the module
B implements a high-level abstraction; if C is using B, what C wants to see is just a high-level
abstraction, and doesn’t concern how B implements such functionality. If C wants to access
low-level stuff, C has to use A explicitly.

There is another type of relationship, though. You might want to take an exiting module A,
and add some interface to it and provide the resulting module B as an extension of A. In such
a case, B is-a A, and it’d be natural that the module that uses B can also see A’s bindings. In
Gauche, it is called module inheritance and realized by extend form.

The following sections in this manual describes modules in details.
e Section 3.7 [Writing Gauche modules], page 36, explains the convention of writing modules.

e Section 4.13 [Modules|, page 75, describes special forms and macros to define and to use
modules, along the built-in functions to introspect module internals.

2.7 Compilation

By default, Gauche reads toplevel Scheme forms one at a time, compile it immediately to interme-
diate form and execute it on the VM. As long as you use Gauche interactively, it looks like an in-
terpreter. (There’s an experimental ahead-of-time compiler as well. See HOWTO-precompile.txt
if you want to give a try.)

The fact that we have separate compilation/execution phase, even interleaved, may lead a
subtle surprise if you think Gauche as an interpreter. Here’s a few points to keep in mind:

load is done at run time.

load is a procedure in Gauche, therefore evaluated at run time. If the loaded
program defines a macro, which is available for the compiler after the toplevel form
containing load is evaluated. So, suppose foo.scm defines a macro foo, and you
use the macro like this:

;3 in ““foo.scm”

(define-syntax foo

(syntax-rules () ((_ arg) (quote arg))))

;3 in your program
(begin (load "foo") (foo (1 2 3)))
= error, bad procedure: ‘1’

(load "foo")
(foo (1 23)) = (1 2 3)
The (begin (load ...)) form fails, because the compiler doesn’t know foo is a

special form at the compilation time and compiles (1 2 3) as if it is a normal pro-
cedure call. The latter example works, however, since the execution of the toplevel
form (load "foo") is done before (foo (1 2 3)) is compiled.

Chapter 2: Concepts 17

To avoid this kind of subtleties, use require or use to load a program fragments.
Those are recognized by the compiler.

require is done at compile time
On the other hand, since require and use is recognized by the compiler, the spec-

ified file is loaded even if the form is in the conditional expression. If you really
need to load a file on certain condition, use load or do dispatch in macro (e.g.
cond-expand form (see Section 4.12 [Feature conditional], page 72).)

18

3 Programming in Gauche

3.1 Invoking Gosh

Gauche can be used either as an independent Scheme scripting engine or as an embedded Scheme
library. An interactive interpreter which comes with Gauche distribution is a program named
gosh.

gosh [options| [scheme-file arg . . .] [Program]
Gauche’s interpreter. Without scheme-file, gosh works interactively, i.e. it reads a Scheme
expression from the standard input, evaluates it, and prints the result, and repeat that until
it reads EOF or is terminated.

If gosh is invoked without scheme-file, but the input is not a terminal, it enters read-eval-
print loop but not writes out a prompt while waiting input form. This is useful when you
pipe Scheme program into gosh. You can force this behavior or suppress this behavior by -b
and -i options.

If scheme-file is specified, gosh runs it as a Scheme program and exit. See Section 3.3 [Writing
Scheme scripts], page 29, for details.

Command-line options

The following command line options are recognized by gosh. The first command line argument
which doesn’t begin with ‘—’ is recognized as the script file. If you want to specify a file that
begins with a minus sign, use a dummy option ‘--".

-1 path [Command Option]
Prepends path to the load path list. You can specify this option more than once to add
multiple paths.

-A path [Command Option]
Appends path to the tail of the load path list. You can specify this option more than once
to add multiple paths.

-q [Command Option]
Makes gosh not to load the default initialization file.

-V [Command Option)]
Prints the gosh version and exits.

-v version [Command Option]
If version is not the running gosh’s version, execute the specified version of gosh instead if
it is installed. This is useful when you want to invoke specific version of Gauche. Note that
version must be 0.9.6 or later.

-u module [Command Option)]
Use module. Before starting execution of scheme-file or entering the read-eval-print loop,
the specified module is used, i.e. it is loaded and imported (See Section 4.13.3 [Defining and
selecting modules]|, page 77, for details of use). You can specify this option more than once
to use multiple modules.

-1 file [Command Option]
Load file before starting execution of scheme-file or entering the read-eval-print loop. The
file is loaded in the same way as load (see Section 6.22.1 [Loading Scheme file], page 264).
You can specify this option more than once to load multiple files.

Chapter 3: Programming in Gauche 19

-L file [Command Option)]
Load file like -1, but if file does not exist, this silently ignores it instead of reporting an error.
This option can also be specified multiple times.

-e scheme-expression [Command Option]
Evaluate scheme-expression before starting execution of scheme-file or entering the read-eval-
print loop. Evaluation is done in the interaction-environment (see Section 6.20 [Eval and repl],
page 239). You can specify this option more than once to evaluate multiple expressions.

-E scheme-expression [Command Option]
Same as -e, except the scheme-expression is read as if it is surrounded by parenthesis. For
example:

% gosh -umath.const -E"print (sin (* pi/180 15))" -Eexit
0.25881904510252074

-b [Command Option]
Batch. Does not print prompts even if the input is a terminal.

-i [Command Option]
Interactive. Print prompts even if the input is not a terminal.

-m module [Command Option]
When a script file is given, this option makes the module named module in which the main
procedure is looked for, instead of the user module. See Section 3.3 [Writing Scheme scripts],
page 29, for the details of executing scripts.

If the named module doesn’t exist after loading the script, an error is signaled.

This is useful to write a Scheme module that can also be executed as a script.

-f compiler-option [Command Option]
This option controls compiler and runtime behavior. For now we have following options
available:

case-fold Ignore case for symbols.

include-verbose
Reports whenever a file is included. Useful to check precisely which files are
included in what order.

load-verbose
Reports whenever a file is loaded. Useful to check precisely which files are loaded
in what order.

no-inline Prohibits the compiler from inlining procedures and constants. Equivalent to
no-inline-globals, no-inline-locals, no-inline-constants and no-inline-setters com-

bined.

no-inline-constants
Prohibits the compiler from inlining constants.

no-inline-globals
Prohibits the compiler from inlining global procedures.

no-inline-locals
Prohibits the compiler from inlining local procedures.

no-inline-setters
Prohibits the compiler from inlining setters.

Chapter 3: Programming in Gauche 20

no-lambda-lifting-pass
Prohibits the compiler from running lambda-lifting pass.

no-post-inline-pass
Prohibits the compiler from running post-inline optimization pass.

no-source-info
Don’t keep source information for debugging. Consumes less memory.

safe-string-cursors
String cursors used on wrong strings will raise an error. This may cause perfor-
mance problems because all cursors will be allocated on heap. See Section 6.11.5
[String cursors], page 168.

test Adds "../src" and "../1ib" to the load path before loading initialization file.
This is useful when you want to test the compiled gosh REPL without installing
it.

warn-legacy-syntax
Warns if the reader sees legacy hex-escape syntax in string literals. See
Section 6.21.7.2 [Reader lexical mode|, page 253. See Section 2.4 [Case-
sensitivity|, page 14.

-p profiler-option [Command Option]
Turn on the profiler. The following profiler-option is recognized:

time Records and reports time spent on function calls and number of times each func-
tion is called.

load Records and reports time spent on loading each modules. Useful to tune start-up
time of the scripts. (Results are in elapsed time).

See Section 3.6.1 [Using profiler|, page 34, for the details of the profiler.

-r standard-revision [Command Option]
Start gosh with an environment of the specified revision of Scheme standard. Currently only
7 is supported as standar-revision.

By default, gosh starts with user module, which inherits gauche module. That means you
can use whole Gauche core procedures by default without explicitly declaring it.

Proper R7RS code always begins with either define-library or R7RS-style import form,
and Gauche recognizes it and automatically switch to R7RS environments so that R7RS
scripts and libraries can be executed by Gauche without special options. However, users who
are learning R7RS Scheme may be confused when the initial environment doesn’t look like
R7RS.

By giving -r7 option, gosh starts with r7rs.user module that extends the r7rs module,
which defines two R7RS forms, import and define-library.

If you invoke gosh into an interactive REPL mode with -r7 option, all standard R7RS-small
libraries (except (scheme r5rs)) are already imported for your convenience.

See Chapter 10 [Library modules - R7RS standard libraries], page 542, for the details on how
Gauche supports R7RS.

(Note: The -r7 option doesn’t change reader lexical mode (see Section 6.21.7.2 [Reader
lexical mode], page 253) to strict-r7. That’s because using strict-r7 mode by default
prevents many Gauche code from being loaded.)

- [Command Option]
When gosh sees this option, it stops processing the options and takes next command line
argument as a script file. It is useful in case if you have a script file that begins with a minus
sign, although it is not generally recommended.

Chapter 3: Programming in Gauche 21

The options -1, -A, -1, -u, -e and -E are processes in the order of appearance. For example,
adding a load path by -I affects the -1 and -u option after it but not before it.

Environment variables

The following environment variables are recognized:

GAUCHE_AVAILABLE_PROCESSORS [Environment variable]
You can get the number of system’s processors by sys-available-processors (see
Section 6.24.3 [Environment inquiry], page 273); libraries/programs may use this info
to optimize number of parallel threads. But you might change that, for testing and
benchmarking—e.g. a program automatically uses 8 threads if there are 8 cores, but you
might want to run it with 1, 2, 4 threads as well to see the effect of parallelization. This
environment variable overrides the return value of sys-available-processors.

GAUCHE_CHECK_UNDEFINED_TEST [Environment variable]
Warn if #<undef> is used in the test expression of branch.

In boolean context, #<undef> counts true. It is also often the case that a procedure returns
#<undef> when the return value doesn’t matter, and you shouldn’t rely on the value that is
supposed not to matter—the procedure may change the return value in future (which should be
ok, since the value shouldn’t have mattered), which can cause unintentional and hard-to-track
bugs. See Section 6.5 [Undefined values|, page 134, for the details.

We strongly recommend users to turn on this warning. In future, we plan to make this
default.

GAUCHE_DYNLOAD_PATH [Environment variable]
You can specify additional load paths for dynamically loaded objects by this environment
variable, delimiting the paths by ’:’. The paths are appended before the system default load
paths.

See Section 6.22.2 [Loading dynamic library], page 266, for the details of how Gauche finds
dynamically loadable objects.

GAUCHE_EDITOR [Environment variable]

EDITOR [Environment variable]
This is used by ed procedure in gauche.interactive module. See Section 9.13 [Interactive
session], page 416, for the details.

GAUCHE_HISTORY_FILE [Environment variable]
Specifies the filename where the REPL history is saved. If this enviornment varible is not
set, history is saved in ~/.gosh_history. If this enviornment variable is set but an empty
string, history isn’t saved. If the process is suid/sgid-ed, history won’t be saved.

GAUCHE_KEYWORD_DISJOINT [Environment variable]

GAUCHE_KEYWORD_IS_SYMBOL [Environment variable]
These two environment variables affect whether keywords are treated as symbols or not. See
Section 6.8 [Keywords|, page 150, for the details.

GAUCHE_LEGACY_DEFINE [Environment variable]
Make the behavior of toplevel define the same as 0.9.8 and before. It allows certain legacy
programs that aren’t valid R7TRS. See Section 4.10.1 [Into the Scheme-Verse|, page 69, for
the details.

GAUCHE_LOAD_PATH [Environment variable]
You can specify additional load paths by this environment variable, delimiting the paths by
’:’. The paths are appended before the system default load paths.

Chapter 3: Programming in Gauche 22

See Section 6.22.1 [Loading Scheme file], page 264, for the details of how Gauche finds files
to load.

GAUCHE_MUTABLE_LITERALS [Environment variable]
Allow literal lists and vectors to be mutated. Such code isn’t a valid Scheme program and
causes an error, but Gauche didn’t enforce the restriction on 0.9.9 and before, so some
legacy code may accidentally mutates literals. Set this environment variables to run such old
programs. See Section 4.2 [Literals|, page 45, for the details.

GAUCHE_NO_READ_EDIT [Environment variable]
Disable line-editor on REPL prompt, even the terminal is capable. You can also turn it off
with —-fno-read-edit command-line option, or ,edit off toplevel commands during REPL
session. See Section 3.2 [Interactive development], page 23, for the details of line editing.

GAUCHE_QUASIRENAME_MODE [Environment variable]
This affects quasirename behavior, to keep the backward compatibility with 0.9.7 and before.
See Section 5.2.2 [Explicit-renaming macro transformer], page 90, for the details.

GAUCHE_REPL_NO_PPRINT [Environment variable]
This is used by gauche.interactive module to suppress pretty-printing on REPL prompt.
See Section 3.2 [Interactive development], page 23, for the details.

GAUCHE_SUPPRESS_WARNING [Environment variable]
Suppress system warnings (WARNING: ...). Not generally recommended; use only if you
absolutely need to.

GAUCHE_TEST_RECORD_FILE [Environment variable]
This is used by gauche.test module (see Section 9.33 [Unit testing], page 489). If defined,
names a file the test processes keep the total statistics.

GAUCHE_TEST_REPORT_ERROR [Environment variable]
This is used by gauche.test module (see Section 9.33 [Unit testing], page 489). If defined,
reports stack trace to stderr when the test thunk raises an error (even when it is expected).
Useful for diagnosis of unexpected errors.

TMP [Environment variable]
TMPDIR [Environment variable]
TEMP [Environment variable]
USERPROFILE [Environment variable]

These may affect the return value of sys-tmpdir. Different environment variables may be
used on different platforms. See Section 6.24.4.3 [Pathnames]|, page 278, for the details.

Windows-specific executable

On Windows-native platforms (mingw), two interpreter executables are installed. gosh.exe
is compiled as a Windows console application and works just like ordinary gosh; that is, it
primarily uses standard i/o for communication. Another executable, gosh-noconsole.exe, is
compiled as a Windows no-console (GUI) application. It is not attached to a console when it is
started. Its standard input is connected to the NUL device. Its standard output and standard
error output are special ports which open a new console when something is written to them for
the first time. (NB: This magic only works for output via Scheme ports; direct output from
low-level C libraries will be discarded.)

The main purpose of gosh-noconsole.exe is for Windows scripting. If a Scheme script were
associated to gosh.exe and invoked from Explorer, it would always open a new console window,
which is extremely annoying. If you associate Scheme scripts to gosh-noconsole.exe instead,
you can avoid console from popping up.

Chapter 3: Programming in Gauche 23

If you’re using the official Windows installer, Scheme scripts (*.scm) have already associated
to gosh-noconsole.exe and you can invoke them by double-clicking on Explorer. Check out
some examples under C:\Program Files\Gauche\examples.

3.2 Interactive development

When gosh is invoked without any script files, it goes into interactive read-eval-print loop
(REPL).

To exit the interpreter, type EOF (usually Control-D in Unix terminals) or evaluate (exit).

In the interactive session, gosh loads and imports gauche.interactive module (see
Section 9.13 [Interactive session|, page 416) into user module, for the convenience. Also, if
there’s a file . gaucherc under the user’s home directory. You may put settings there that would
help interactive debugging. (As of Gauche release 0.7.3, .gaucherc is no longer loaded when
gosh is run in script mode.)

Note that .gaucherc is always loaded in the user module, even if gosh is invoked with -r7
option. The file itself is a Gauche-specific feature, so you don’t need to consider portability in
it.

I recommend you to run gosh inside Emacs, for it has rich features useful to interact with
internal Scheme process. Put the following line to your .emacs file:
(setq scheme-program-name "gosh -i")
And you can run gosh by M-x run-scheme.

If you run gosh in the terminal with capability of cursor control, a basic line-editing feature
is available in the REPL session. See Section 3.2.2 [Input editing], page 28, for the details.

If you want to use multibyte characters in the interaction, make sure your terminal’s settings
is in sync with gosh’s internal character encodings.

3.2.1 Working in REPL

When you enter REPL, Gauche prompts you to enter a Scheme expression:
gosh>

(If you enable input editing, the prompt shows gosh$ instead of gosh>. See Section 3.2.2
[Input editing], page 28, for the details.)

After you complete a Scheme expression and type ENTER, the result of evaluation is printed.

gosh> (+ 1 2)
3
gosh>

The REPL session binds the last three results of evaluation in the global variables *1, *2
and *3. You can use the previous results via those history variables in subsequent expressions.

gosh> *1

3

gosh> (+ *2 3)
6

If the Scheme expression yields multiple values (see Section 6.15.8 [Multiple values], page 218),
they are printed one by one.

gosh> (mingmax 1 -1 8 3)
-1

8

gosh>

Chapter 3: Programming in Gauche 24

The history variable *1, *2 and *3 only binds the first value. A list of all values are bound
to *1+, *2+ and *3+.

gosh> *1
-1

gosh> *2+
(-1 8)

(Note that, when you evaluate *1 in the above example, the history is shifted—so you need
to use *2+ to refer to the result of (min&max 1 -1 8 3).)

The *history procedure shows the value of history variables
gosh> (*history)

*1: (-1 8)
*¥2: -1
*3: -1
gosh>

As a special case, if an evaluation yields zero values, history isn’t updated. The *history
procedure returns no values, so merely looking at the history won’t change the history itself.

gosh> (*history)

*x1: (-1 8)
*2: -1
*3: -1

gosh> (values)
gosh> (*history)

x1: (-1 8)
*2: -1
*3: -1

Finally, a global variable *e is bound to the last uncaught error condition object.

gosh> (filter odd? ’(1 2 x 4 5))
% ERROR: integer required, but got x
Stack Trace:

0 (eval expr env)

At line 173 of "/usr/share/gauche-0.9/0.9.3.3/1lib/gauche/interactive.scm"]]
gosh> *e

#<error "integer required, but got x">
(The error stack trace may differ depending on your installation.)

In REPL prompt, you can also enter special top-level commands for common tasks. Top-
level commands are not Scheme expressions, not even S-expressions. They work like traditional
line-oriented shell commands instead.

Top-level commands are prefixed by comma to be distinguished from ordinary Scheme ex-
pressions. To see what commands are available, just type ,help and return.
gosh> ,help
You’re in REPL (read-eval-print-loop) of Gauche shell.
Type a Scheme expression to evaluate.

A word preceded with comma has special meaning. Type ,help <cmd>
to see the detailed help for <cmd>.

Commands can be abbreviated as far as it is not ambiguous.

,apropos|a Show the names of global bindings that match the regexp.
,cd Change the current directory.

Chapter 3: Programming in Gauche 25

,describe|d Describe the object.
,helplh Show the help message of the command.
,history Show REPL history.
,infoldoc Show info document for an entry of NAME, or search entries by REGEXP.[]
,load|l Load the specified file.
,print-alll|pa
Print previous result (*1) without abbreviation.
,print-mode | pm
View/set print-mode of REPL.

,pwd Print working directory.

,reload|r Reload the specified module, using gauche.reload.

,sh Run command via shell.

,source Show source code of the procedure if it’s available.

,uselu Use the specified module. Same as (use module option ...).

To see the help of each individual commands, give the command name (without comma) to
the help command:

gosh> ,help d

Usage: dldescribe [object]

Describe the object.

Without arguments, describe the last REPL result.

The ,d (or ,describe) top-level command describes the given Scheme object or the last
result if no object is given. Let’s try some:
gosh> (sys-stat "/home")
#<<sys-stat> 0x2d6adc0>

gosh> ,d
#<<sys-stat> 0x2d6adc0> is an instance of class <sys-stat>
slots:
type : directory
perm 1 493
mode : 16877
ino 2
dev : 2081
rdev : 0
nlink : 9
uid : 0
gid : 0
size : 208
atime 1 1459468837
mtime : 1401239524
ctime : 1401239524

In the above example, first we evaluated (sys-stat "/home"), which returns <sys-stat>
object. The subsequent ,d top-level command describes the returned <sys-stat> object.

The description depends on the type of objects. Some types of objects shows extra informa-
tion. If you describe an exact integer, it shows alternative interpretations of the number:

gosh> ,d 1401239524
1401239524 is an instance of class <integer>
(#x538537e4, ~ 1.3Gi, 2014-05-28T01:12:04Z as unix-time)
gosh> ,d 48
48 is an instance of class <integer>
(#x30, #\0 as char, 1970-01-01T00:00:48Z as unix-time)

Chapter 3: Programming in Gauche 26

If you describe a symbol, its known bindings is shown.
gosh> ,d ’filter
filter is an instance of class <symbol>
Known bindings for variable filter:
In module ‘gauche’:
#<closure (filter pred lis)>
In module ‘gauche.collection’:
#<generic filter (2)>
If you describe a procedure, and its source code location is known, that is also shown (see
the Defined at. .. line):
gosh> ,d string-interpolate
#<closure (string-interpolate str :optional (legacy? #f))> is an
instance of class <procedure>
Defined at "../lib/gauche/interpolate.scm":64

slots:

required : 1

optional : #t

optcount : 1

locked . #f

currying : #f

constant : #f

info : (string-interpolate str :optional (legacy? #f))
setter . #f

Let’s see a couple of other top-level commands. The ,info command shows the manual
entry of the given procedure, variable, syntax, module or a class. (The text is searched from the
installed info document of Gauche. If you get an error, check if the info document is properly
installed.)

gosh> ,info append
-— Function: append list
[R7RS] Returns a list consisting of the elements of the first LIST
followed by the elements of the other lists. The resulting list is
always newly allocated, except that it shares structure with the
last list argument. The last argument may actually be any object;
an improper list results if the last argument is not a proper list.

gosh> ,info srfi-19
-- Module: srfi-19
This SRFI defines various representations of time and date, and
conversion methods among them.

On Gauche, time object is supported natively by ’<time>’ class
(*note Time::). Date object is supported by ’<date>’ class
described below.

gosh> ,info <list>
—-— Builtin Class: <list>
An abstract class represents lists. A parent class of ’<null>’ and
’<pair>’. Inherits ’<sequence>’.

Note that a circular list is also an instance of the ’<list>’
class, while ’1list?’ returns false on the circular lists and dotted

Chapter 3: Programming in Gauche 27

lists.
(use srfi-1)
(1ist? (circular-list 1 2)) => #f
(is-a? (circular-list 1 2) <list>) => #t

You can also give a regexp pattern to ,info command (see Section 6.12 [Regular expressions],
page 177). It shows the entries in the document that match the pattern.

gosh> ,info #/"string-.*\7/

string-ci<="? Full string case conversion:44

String comparison:19
string-ci<? Full string case conversion:43

String comparison:18
string-ci="7 Full string case conversion:42

String comparison:17
string-ci>=7 Full string case conversion:46

String comparison:21
string-ci>? Full string case conversion:45

String comparison:20
string-immutable? String Predicates:9
string-incomplete? String Predicates:12
string-null? SRFI-13 String predicates:6
string-prefix-ci? SRFI-13 String prefixes & suffixes:28
string-prefix? SRFI-13 String prefixes & suffixes:26
string-suffix-ci? SRFI-13 String prefixes & suffixes:29
string-suffix? SRFI-13 String prefixes & suffixes:27

The ,a command (or ,apropos) shows the global identifiers matches the given name or
regexp:

gosh> ,a filter

filter (gauche)
filter! (gauche)
filter$ (gauche)
filter-map (gauche)

Note: The apropos command looks for symbols from the current process—that is, it only
shows names that have been loaded and imported. But it also mean it can show any name as
far as it exists in the current process, regardless of whether it’s a documented API or an internal
entry.

On the other hand, the info command searches info document, regardless of the named
entity has loaded into the current process or not. It doesn’t show undocumented APIs.

You can think that apropos is an introspection tool, while info is a document browsing tool.

When the result of evaluation is a huge nested structure, it may take too long to display the
result. Gauche actually set a limit of length and depth in displaying structures, so you might
occasionally see the very long or deep list is trucated, with ... to show there are more items,
or # to show a subtree is omitted (Try evaluating (make-list 100) on REPL).

You can type ,pa (or ,print-all) toplevel REPL command to fully redisplay the previous
result without omission.

By default, REPL prints out the result using pretty print:

gosh> ,u sxml.ssax
gosh> (call-with-input-file "src/Info.plist" (cut ssax:xml->sxml <> ’()))
(*TOP*

(*PI* xml "version=\"1.0\" encoding=\"UTF-8\"")

Chapter 3: Programming in Gauche 28

(plist

(l@| (version "1.0"))

(dict (key "CFBundleDevelopmentRegion") (string "English")
(key "CFBundleExecutable") (string "Gauche") (key "CFBundleIconFile")
(string) (key "CFBundleldentifier") (string "com.schemearts.gauche")
(key "CFBundleInfoDictionaryVersion") (string "6.0")
(key "CFBundlePackageType") (string "FMWK") (key "CFBundleSignature")
(string "7?77") (key "CFBundleVersion") (string "1.0")
(key "NSPrincipalClass") (string))))

If you want to turn off pretty printing for some reason, type ,pm pretty #f (or ,print-mode
pretty #f) on the toplevel prompt, or start gosh with the environment variable GAUCHE_REPL_
NO_PPRINT set.

Type ,pm default to make print mode back to default. For more details, type ,help pm.

Note: If you invoke gosh with —-q option, which tells gosh not to load the initialization files,
you still get a REPL prompt but no fancy features such as history variables are available. Those
convenience features are implemented in gauche.interactive module, which isn’t loaded with
-q option.

3.2.2 Input editing

When you run gosh in a terminal capable of cursor control, you can edit input expressions. If
input editing mode is on, the REPL prompt ends with $, such as gosh$, instead of gosh>.

(NB: Currently Gauche only supports terminals with vt100-like escape sequence, or Windows
console. If the terminal type isn’t recognized as one of them, it falls back to non-editing mode.
You can tell which mode it is from the prompt.)

The input editing feature is still under development. If you stumbled with a serious bug, you
can turn it off by setting an enviornment variable GAUCHE_NO_READ_EDIT, or giving -fno-read-
edit option to gosh, or type ,edit off on REPL.

The key binding is similar to Emacs. Eventually we’ll provide customization feature. Before
going into details, here’s a few quick useful tips.

e If the screen is garbled somehow, type C-1 (control+l) to clear and redisplay.
e If you want to turn off editing during REPL session, use ,edit off toplevel command.

e The input editor only sends a complete S-expression to the evaluator. If somehow you want
to send the current input as-is (or, in case the editor has a bug and don’t allow you to send
a complete S-expression), type C-M-x (control-meta-x) to force sending the current input
to the evaluator.

e You can type M-h h to see a brief summary of editor features, M-h b to see the list of keymap,
or M-h k + keystroke to see the help of the key. (C-h is the same as backspace).

e If you suspend gosh, then resume it by shell’s job control feature (e.g. C-z, then fg). type
ENTER to regain editing screen.

Cursor movement

C-f (forward) and C-b (backward) moves the cursor forward and backward character-wise. C-p
(previous) and C-n (next) moves character to previous or next line, if the input already has
multiple lines, or moves to previous or next history.

M-f and M-b move the cursor forward and backward, word-wise.

C-a and C-e to move to the beginning and end of the line, M-< and M-> to move to the
beginning and end of of the input.

Chapter 3: Programming in Gauche 29

Undo
C-_ is undo the edit. You can keep typing C-_ to undo the edits you’ve made. We follow the

Emacs model of undo semantics, which allows “undoing undoes”. For the detailed algorithm,
see the comment at the bottom of 1ib/text/line-edit.scm in the source tree.

Kill and yank
C-k removes characters from the cursor to the end of line. If the cursor is at the end of the line
though, it removes the newline character (so that next line is combined to the current line).

M-d removes a word that contains the cursor, or a word immediately after the cursor if it is
not on a word.

C-@ set a mark to the current cursor position. C-w removes chracters between the cursor and
the mark.

The characters removed by those commands are saved in the buffer called “kill-ring”. They
can be recalled at the cursor position by C-y (yank). If you press M-y immediately followed by
C-y, you can go back to the older killed characters.

Finishing input

RET (or C-m) inserts a newline if the input isn’t a complete S-expresson. If the input is already
a complete S-expression, however, it sends the entire input to the evaluator, no matter where
the cursor is. If you want to insert a newline in a complete S-expression, you can use C-j.

M-C-x sends the current input regardless that the input is a complete S-expression or not.

History

Input history is remembered and recalled by M-p (prev-history) and M-n (next-history). The
cursor movement command C-p and C-n also moves to the previous or next history if it is pressed
when the cursor is at the beginning or the end of the input lines.

The input interrupted by C-c isn’t remembered.

By default, the input is saved to a file */.gosh_history when the REPL is terminated
normally, and reloaded when the next REPL is invoked. The name of the history file can be
changed by the environment variable GAUCHE_HISTORY_FILE. If the environment variable is
defined to an empty string, however, the history won’t be saved.

Miscellaneous

C-g cancels the current multi-key sequences.
C-c cancels the current input.
C-t transpose characters at and before the cursor.
C-q reads the next keystroke and insert it into the input as is.
M- (inserts a pair of parentheses, and locate a cursor inside them.

C-1 clears the screen and redraws the current input buffer.

3.3 Writing Scheme scripts

When a Scheme program file is given to gosh, it makes the user module as the current module,
binds a global variable *argv#* to the list of the remaining command-line arguments, and then
loads the Scheme program. If the first line of scheme-file begins with two character sequence
“#17_ the entire line is ignored by gosh. This is useful to write a Scheme program that works
as an executable script in unix-like systems.

Typical Gauche script has the first line like these
#!/usr/local/bin/gosh

Chapter 3: Programming in Gauche 30

or,
#!/usr/bin/env gosh
or,
#!/bin/sh
:; exec gosh -- $0 "$@"

The second and third form uses a “shell trampoline” technique so that the script works as
far as gosh is in the PATH. The third form is useful when you want to pass extra arguments to
gosh, for typically #!-magic of executable scripts has limitations for the number of arguments
to pass the interpreter.

After the file is successfully loaded, gosh calls a procedure named ‘main’ if it is defined in
the user module. Main receives a single argument, a list of command line arguments. Its first
element is the script name itself.

When main returns, and its value is an integer, gosh uses it for exit code of the program.
Otherwise, gosh exits with exit code 70 (EX_SOFTWARE). This behavior is compatible with the
SRFI-22.

If the main procedure is not defined, gosh exits after loading the script file.

Although you can still write the program main body as toplevel expressions, like shell scripts
or Perl scripts, it is much convenient to use this ‘main’ convention, for you can load the script
file interactively to debug.

Using -m command-line option, you can make gosh call main procedure defined in a module
other than the user module. It is sometimes handy to write a Scheme module that can also be
executed as a script.

For example, you write a Scheme module foo and within it, you define the main procedure.
You don’t need to export it. If the file is loaded as a module, the main procedure doesn’t do
anything. But if you specify -m foo option and give the file as a Scheme script to gosh, then
the main procedure is invoked after loading the script. You can code tests or small example
application in such an alternate main procedure.

Note on RTRS Scripts: If the script is written in R7RS Scheme (which can be distinguished
by the first import declaration, see Section 10.1.2 [Three forms of import], page 544), it is read
into r7rs.user module and its main isn’t called. You can give -mr7rs.main command-line
argument to call the main function in R7RS script. Alternatively, as specified in SRFI-22, if the
script interpreter’s basename is scheme-r7rs, we assume the script is RTRS SRFI-22 script and
calls main in r7rs.user module rather than user module. We don’t install such an alias, but
you can manually make symbolic link or just copy gosh binary as scheme-r7rs.

Although the argument of the main procedure is the standard way to receive the command-
line arguments, there are a couple of other ways to access to the info. See Section 6.24.2
[Command-line arguments|, page 273, for the details.

Now I show several simple examples below. First, this script works like cat (1), without any
command-line option processing and error handling.

#!/usr/bin/env gosh

(define (main args) ;entry point
(if (null? (cdr args))
(copy-port (current-input-port) (current-output-port))
(for-each (lambda (file)
(call-with-input-file file

(lambda (in)

(copy-port in (current-output-port)))))
(cdr args)))

Chapter 3: Programming in Gauche 31

0)
The following script is a simple grep command.

#!/usr/bin/env gosh

(define (usage program-name)
(format (current-error-port)
"Usage: “a regexp file ...\n" program-name)
(exit 2))

(define (grep rx port)
(with-input-from-port port
(lambda (O
(port-for-each
(lambda (line)
(when (rxmatch rx line)
(format #t "“a:"a: “a\n"
(port-name port)
(- (port-current-line port) 1)
line)))
read-line))))

(define (main args)
(if (null? (cdr args))
(usage (car args))
(let ((rx (string->regexp (cadr args))))
(if (null? (cddr args))
(grep rx (current-input-port))
(for-each (lambda (f)
(call-with-input-file f
(lambda (p) (grep rx p))))
(cddr args)))))
0)

See also Section 9.24 [Parsing command-line options|, page 448, for a convenient way to parse
command-line options.

3.4 Debugging

Gauche doesn’t have much support for debugging yet. The idea of good debugging interfaces
are welcome.

For now, the author uses the classic ’debug print stub’ technique when necessary. Gauche’s
reader supports special syntaxes beginning with #7, to print the intermediate value.

The syntax #7=expr shows expr itself before evaluating it, and prints its result(s) after
evaluation.

gosh> #7=(+ 2 3)

#7="(stdin)":1: (+ 2 3)

#7- 5

5

gosh> #7=(begin (print "foo") (values ’a ’b ’c))
#7="(stdin)":2: (begin (print "foo") (values ’a ’b ’c))
foo

#7- a

Chapter 3: Programming in Gauche 32

#7+ b
#7+ c
a
b
c

Note: If the debug stub is evaluated in a thread other than the primordial thread (see
Section 9.34 [Threads|, page 495), the output includes a number to distinguish which thread it
is generated. In the following example, #<thread ...> and the prompt is the output of REPL
in the primordial thread, but following #7=[1]... and #7-[1]... are the debug output from
the thread created by make-thread. The number is for debugging only— they differ for each
thread, but other than that there’s no meaning.

gosh> (use gauche.threads)
gosh> (thread-start! (make-thread (~[] #7=(+ 2 3))))
#<thread #f (1) runnable 0xf51400>
gosh> #7=[1]"(standard input)":1:(+ 2 3)
#7-[1] 5
The syntax #7, (proc arg ...) is specifically for procedure call; it prints the value of argu-
ments right before calling proc, and prints the result(s) of call afterwards.
gosh> (define (fact n)
(if (zero? n)
1
(x n #7,(fact (- n 1)))))

fact

#7," (standard input)":4:calling ‘fact’ with args:
#7,> 4

#7," (standard input)":4:calling ‘fact’ with args:
#7,> 3

#7," (standard input)":4:calling ‘fact’ with args:
#7,> 2

#7," (standard input)":4:calling ‘fact’ with args:
#7,> 1

#7," (standard input)":4:calling ‘fact’ with args:
#7,> 0

#7- 1

#7- 1

#7- 2

#7- 6

#7- 24

120

Internally, the syntax #7=x and #7,x are read as (debug-print x) and (debuf-funcall x),
respectively, and the macros debug-print and debug-funcall handles the actual printing. See
Section 6.25.1 [Debugging aid], page 304, for more details.

The reasons of special syntax are: (1) It’s easy to insert the debug stub, for you don’t need
to enclose the target expression by extra parenthesis, and (2) It’s easy to find and remove those
stabs within the editor.

3.5 Using platform-dependent features

Gauche tries to provide low-level APIs close to what the underlying system provides, but some-
times they vary among systems. For example, POSIX does not require symlink, so some
systems may lack sys-symlink (see Section 6.24.4.2 [Directory manipulation], page 277). Quite

Chapter 3: Programming in Gauche 33

a few unix-specific system functions are not available on Windows platform. To allow writing a
portable program across those platforms, Gauche uses cond-expand (see Section 4.12 [Feature
conditional], page 72) extensively. A set of extended feature-identifiers is provided to check
availability of specific features. For example, on systems that has symlink, a feature identi-
fier gauche.sys.symlink is defined. So you can write a code that can switch based on the
availability of sys-symlink as follows:

(cond-expand
(gauche.sys.symlink

. code that uses sys-symlink ...)
(else

. alternative code ...)

)

If you're familiar with system programming in C, you can think it equivalent to the following
C idiom:
#if defined (HAVE_SYMLINK)
code that uses symlink ...
#else
. alternative code ...
#endif

There are quite a few such feature identifiers; each identifier is explained in the manual entry
of the procedures that depend on the feature. Here we list a few important ones:

gauche This feature identifier is always defined. It is useful when you write Scheme code
portable across multiple implementations.

gauche.os.windows
Defined on Windows native platform. Note that cygwin does not define this feature
identifier (but see below).

gauche.os.cygwin
Defined on Cygwin.

gauche.sys.threads
Defined if Gauche is compiled with thread support. See Section 9.34 [Threads],
page 495.

gauche.sys.pthreads

gauche.sys.wthreads
Defined to indicate the underlying thread implementation when Gauche has thread
support. See Section 9.34 [Threads], page 495.

gauche.net.ipv6
Defined if Gauche is compiled with IPv6 support.

gauche.ces.utf8

gauche.ces.eucjp

gauche.ces.sjis

gauche.ces.none
Either one of these feature identifiers is defined, according to the compile-time option
of Gauche’s internal character encoding. See Section 2.2 [Multibyte strings], page 12,
for the details of the internal character encoding.

Because cond-expand is a macro, the body of clauses are expanded into toplevel if
cond-expand itself is in toplevel. That means you can switch toplevel definitions:

(cond-expand

Chapter 3: Programming in Gauche 34

(gauche.os.windows
(define (get-current-user)
. get current username ...))
(else
(define (get-current-user)
(sys-uid->user-name (sys-getuid)))))

Or even conditionally "use" the modules:

(cond-expand
(gauche.os.windows

(use "my-windows-compatibility-module"))
(else))

The traditional technique of testing a toplevel binding (using global-variable-bound?, see
Section 4.13.6 [Module introspection|, page 80) doesn’t work well in this case, since the use form
takes effect at compile time. It is strongly recommended to use cond-expand whenever possible.

Currently the set of feature identifiers are fixed at the build time of Gauche, so it’s less flexible
than C preprocessor conditionals. We have a plan to extend this feature to enable adding new
feature identifiers; but such feature can complicate semantics when compilation and execution
is interleaved, so we’re carefully assessing the effects now.

A couple of notes:

Feature identifiers are not variables. They can only be used within the feature-requirement
part of cond-expand (see Section 4.12 [Feature conditional], page 72, for the complete definition
of feature requirements).

By the definition of srfi-0, cond-expand raises an error if no feature requirements are
satisfied and there’s no else clause. A rule of thumb is to provide else clause always, even it
does nothing (like the above example that has empty else clause).

3.6 Profiling and tuning

If you find your script isn’t running fast enough, there are several possibilities to improve its
performance.

It is always a good idea to begin with finding which part of the code is consuming the
execution time. Gauche has a couple of basic tools to help it. A built-in sampling profiler,
explained in the following subsection, can show how much time is spent in each procedure,
and how many times it is called. The gauche.time module (Section 9.35 [Measure timings],
page 509) provides APIs to measure execution time of specific parts of the code.

Optimization is specialization—you look for the most common patterns of execution, and
put a special path to support those patterns efficiently. Gauche itself is no exception, so there
are some patterns Gauche can handle very efficiently, while some patterns it cannot. The next
subsection, Section 3.6.2 [Performance tips|, page 35, will give you some tips of how to adapt
your code to fit the patterns Gauche can execute well.

3.6.1 Using profiler

As of 0.8.4, Gauche has a built-in profiler. It is still experimental quality and only be tested on
Linux. It isn’t available for all platforms. It works only in single-thread applications for now.

To use the profiler non-interactively, give -ptime command-line option to gosh.
% gosh -ptime your-script.scm

After the execution of your-script.scm is completed, Gauche prints out the table of func-
tions with its call count and its consumed time, sorted by the total consumed time.
Profiler statistics (total 1457 samples, 14.57 seconds)

Chapter 3: Programming in Gauche 35

num time/ total

Name calls call(ms) samples
—_— -— -— —_—— + +
combinations* 237351 0.0142 337(23%)
(1set-difference #f) 1281837 0.0020 256(17%)
(make-anchor make-anchor) 3950793 0.0005 198(13%)
member 4627246 0.0004 190(13%)
filter 273238 0.0030 81(5%
every 1315131 0.0004 59C 4%)
(1set-difference #f #f) 1281837 0.0004 54(C 3%)
(make-entry make-entry) 730916 0.0005 40(C 2%)
(clear? #f) 730884 0.0005 33(C 2%
(initialize #f) 599292 0.0005 32C 2%)
fold 237307 0.0013 30C 2%)
acons 806406 0.0004 29(C 1%)
clear? 33294 0.0084 28(C 1%)
(combinations* #f) 805504 0.0002 15C 1%
(make-exit make-exit) 730884 0.0002 15C 1%
lset-difference 237318 0.0006 15C 1%)
reverse! 475900 0.0001 6(C 0%)
(fold <top> <top> <list>) 237323 0.0003 6(C 0%
procedure? 238723 0.0002 4(C 0%

0.0001 3C 0%)

pair? 237307

Note that the time profiler uses statistic sampling. Every 10ms the profiler interrupts the
process and records the function that is executed then. Compared to the individual execution
time per function call, which is the order of nanoseconds, this sampling rate is very sparse.
However, if we run the program long enough, we can expect the distribution of samples per each
function approximately reflects the distribution of time spent in each function.

Keep in mind that the number is only approximation; the number of sample counts for a
function may easily vary if the program deals with different data sets. It should also be noted
that, for now, GC time is included in the function in which GC is triggered. This sometimes
causes a less important function to "float up" to near-top of the list. To know the general
pattern, it is a good custom to run the program with several different data sets.

On the other hand, the call count is accurate since Gauche actually counts each call.

Because all functions are basically anonymous in Scheme, the 'name’ field of the profiler
result is only a hint. The functions bound at toplevel is generally printed with the global
variable name it is bound at the first time. Internal functions are printed as a list of names,
reflecting the nesting of functions. Methods are also printed as a list of the name and specializers.

The profiler has its own overhead; generally the total process time will increase 20-30%. If
you want to turn on the profiler selectively, or you’re running a non-stop server program and
want to obtain the statistics without exiting the server, you can call the profiler API from your
program; see Section 6.25.2 [Profiler API|, page 305, for the details.

3.6.2 Performance tips

Don’t guess, just benchmark. It is the first rule of performance tuning. Especially for the
higher-level languages like Scheme, what impacts on performance greatly depends on the im-
plementation. Certain operations that are very cheap on an implementation may be costly on
others. Gauche has such implementation-specific characteristics, and to know some of them
would help to see what to look out in the benchmark results.

"80% of execution time is spent in 20% of the code" is another old saying. Don’t obscure your
code by "potential" optimization that has little impact on the actual execution. We describe
some tips below, but it doesn’t mean you need to watch them all the time. It is better to keep
most of the code clean and easy to understand, and only do tricks on the innermost loop.

Chapter 3: Programming in Gauche 36

Ports: To satisfy the specification of SRFI-18 (Threading), every call to I/O primitives of
Gauche locks the port. This overhead may be visible if the application does a lot of I/O with
smaller units (e.g. every bytes). The primitives that deals with larger unit, such as read and
read-uvector, are less problematic, since usually they just lock the port once per call and do all
the low-level I/O without the lock overhead. (Note: this doesn’t mean those primitives guarantee
to lock the port throughout the execution of the function; furthermore, the port locking feature
is optimized for the case that port accesses rarely collide. If you know it is possible that more
than one threads read from or write to the same port, it is your responsibility to use mutex
explicitly to avoid the collision.)

If you find out the locking is indeed a bottleneck, there are couple of things you can con-
sider: (1) Try using the larger-unit primitives, instead of calling the smaller-unit ones. (2) Use
with-port-locking (see Section 6.21.2 [Port and threads], page 241) to lock the port in larger
context.

Strings: Because of the multibyte strings, two operations are particularly heavy in Gauche:
string mutation and indexed string access. It is a design choice; we encourage the programming
style that avoids those operations. When you sequentially access the string, string ports (see
Section 6.21.5 [String ports], page 248) provide a cleaner and more efficient way. When you search
and retrieve a substring, there are various higher-level primitives are provided (see Section 6.11.9
[String utilities|, page 172, Section 6.12 [Regular expressions|, page 177, and Section 11.5 [String
library], page 652, for example). If you're using strings to represent an octet sequence, use
uniform vectors (see Section 6.13.2 [Uniform vectors], page 191) instead.

Deep recursion: Gauche’s VM uses a stack for efficient local frame allocation. If recursion
goes very deep (depending on the code, but usually several hundreds to a thousand), the stack
overflows and Gauche moves the content of the stack into the heap. This incurs some overhead.
If you observe a performance degradation beyond a certain amount of data, check out this
possibility.

Generic functions: Because of its dynamic nature, generic function calls are slower than
procedure calls. Not only because of the runtime dispatch overhead, but also because Gauche’s
compile-time optimizer can’t do much optimization for generic function calls. You don’t need
to avoid generic functions because of performance reasons in general, but if you do find single
function call consuming a large part of execution time and it is calling a generic function in its
inner loop—then it may be worth to modify it.

Redefining builtin functions: Gauche inlines some builtin functions if they are not redefined.
Although sometimes it is useful to redefine basic functions, you may want to limit the effect.
For example, put redefined functions in a separate module and use the module in the code that
absolutely needs those functions replaced.

Closure creation: When you create a closure, its closing environment is copied to the heap.
This overhead is small, but it still may be visible when a closure is created within an innermost
loop that is called millions of times. If you suspect this is a problem, try disassemble the function.
Gauche’s compiler uses some basic techniques of closure analysis to avoid creating closures for
typical cases, in which case you see the local function’s bodies are inlined. If you see a CLOSURE
instruction, though, it means a closure is created.

This list isn’t complete, and may change when Gauche’s implementation is improved, so
don’t take this as fixed features. We’ll adjust it occasionally.

3.7 Writing Gauche modules

Gauche’s libraries are organized by modules. Although Gauche can load any valid Scheme
programs, there is a convention that Gauche’s libraries follow. When you write a chunk of
Scheme code for Gauche, it is convenient to make it a module, so that it can be shared and/or
reused.

Chapter 3: Programming in Gauche 37

Usually a module is contained in a file, but you can make a multi-file module. First I explain
the structure of a single-file module. The following template is the convention used in Gauche’s
libraries.

;; Define the module interface
(define-module foo

(use xxx)

(use yyy)

(export fool foo2 foo03)

)
;; Enter the module
(select-module foo)

. module body ...

This file must be saved as “foo.scm” in some directory in the *1load-pathx.

The define-module form creates a module foo. It also loads and imports some other modules
by ‘use’ macros, and declares which symbols the foo module exports, by ‘export’ syntax. (See
section Section 4.13.3 [Defining and selecting modules], page 77, for detailed specification of
those syntaxes).

Those use forms or export forms are not required to appear in the define-module form,
but it is a good convention to keep them in there at the head of the file so that it is visually
recognizable which modules foo depends and which symbols it exports.

The second form, ‘select-module’, specifies the rest of the file is evaluated in the module
foo you just defined. Again, this is just a convention; you can write entire module body inside
define-module. However, I think it is error-prone, for the closing parenthesis can be easily
forgotten or the automatic indentation mechanism of editor will be confused.

After select-module you can write whatever Scheme expression. It is evaluated in the
selected module, foo. Only the bindings of the exported symbols will be directly accessible
from outside.

So, that’s it. Other programs can use your module by just saying ‘(use foo)’. If you want
to make your module available on your site, you can put it to the site library location, which
can be obtained by

(gauche-site-library-directory)
in gosh, or

gauche-config --sitelibdir
from shell.

If you feel like to conserve global module name space, you can organize modules hierarchically.
Some Gauche libraries already does so. See Chapter 8 [Library modules - Overview|, page 336,
for examples. For example, text.tr module is implemented in “text/tr.scm” file. Note that the
pathname separator ‘/’ in the file becomes a period in the module name.

3.8 Using extension packages

Building and installing packages

Gauche comes with some amount of libraries, but they aren’t enough at all to use Gauche in
the production environment. There are number of additional libraries available. We call them
extension packages, or simply packages. Each package usually provides one or more modules
that adds extra functionality. Most of the packages provide binding to other C libraries, such

Chapter 3: Programming in Gauche 38

as graphics libraries or database clients. If the package has some C code, it is likely that you
need to compile it on your machine with the installed Gauche system.

Usually a package is in the form of compressed tarball, and the standard "ungzip + untar
+ configure + make + make install" sequence does the job. Read the package’s document, for
you may be able to tailor the library for your own needs by giving command-line options to the
configure script.

From Gauche 0.8, an utility script called gauche-package is installed for the convenience. It
automates the build and install process of packages.

Suppose you have downloaded a package Package-1.0.tar.gz. If the package follows the
convention, all you have to do is to type this:

$ gauche-package install Package-1.0.tar.gz

It ungzips and untars the package, cd into the Package-1.0 subdirectory, run configure,
make, and make install. By default, gauche-package untars the tarball in the current working
directory. You can change it by a customization file; see below.

If you need a special privilege to install the files, you can use --install-as option which
runs make install part via the sudo program.

$ gauche-package install --install-as=root Package-1.0.tar.gz

If it doesn’t work for you, you can just build the package by gauche-package build Package-
1.0.tar.gz, then manually cd to the Package-1.0 directory and run make install.

You can give configuration options via -C or ——configure-options command-line argument,
like this:

$ gauche-package install -C "--prefix=/usr/local" Package-1.0.tar.gz

If the package has adopted the new package description file, it can remember the configuration
options you have specified, and it will automatically reuse them when you install the package
again. (If you're a package developer, check out examples/spigot/READVME file in the Gauche
source tree to see how to cooperate with Gauche’s package management system.)

If you don’t have a tarball in your local directory, but you know the URL where you can
download it, you can directly give the URL to gauche-package. It understands http and ftp,
and uses either wget or ncftpget to download the tarball, then runs configure and make.

$ gauche-package install http://www.example.com/Package-1.0.tar.gz

Customizing gauche-package

The gauche-package program reads ~/.gauche-package if it exists. It must contain an asso-
ciative list of parameters. It may look like this:

(
(build-dir . "/home/shiro/tmp")
(gzip . "/usr/local/bin/gzip")
(bzip2 . "/usr/local/bin/bzip2")
(tar . "/usr/local/bin/gtar")
)

The following is a list of recognized parameters. If the program isn’t given in the configuration
file, gauche-package searches PATH to find one.

build-dir
A directory where the tarball is extracted. If URL is given, the downloaded file is
also placed in this directory.

bzip2 Path to the program bzip2.

cat Path to the program cat.

Chapter 3: Programming in Gauche 39

make Path to the program make.

ncftpget Path to the program ncftpget.

rm Path to the program rm.
sudo Path to the program sudo.
tar Path to the program tar.
wget Path to the program wget.

3.9 Building standalone executables

When you want to distribute your Gauche scripts or applications, the users need to install Gauche
runtime on their machine. Although it is always the case for any language implementations—
you need Java runtime to run Java applications, or C runtime to run C applications—it may be
an extra effort to ask users to install not-so-standard language runtimes.

To ease distribution of Gauche applications, you can create a stand-alone executable. It
statically links entire Gauche system so that it runs by just copying the executable file.

Quick recipe
To generate a standalone executable, just give your script file to the build-standalone script,
which is installed as a part of Gauche.
gosh build-standalone yourscript.scm
It will create an executable file yourscript (or yourscript.exe on Windows) in the current
directory.
To specify the output name different from the script name, give —o option:
gosh build-standalone -o yourcommand yourscript.scm
When your script needs supporting library files, you should list those files as well:
gosh build-standalone yourscript.scm lib/libraryl.scm 1ib/library2.scm

The library file paths need to be relative to the respective load path. See the explanation of
-I option below.

Catches

There are a few things you should be aware of.

e The size of the binary tend to be large, since it contains the entire Gauche system regardless
of whether your application use it or not. You can strip down the size if you need to, but
you need to rebuild Gauche library to do so. See doc/HOWTO-standalone.txt in the source
tree for the details.

e The generated binary still depends on external dynamically linked libraries, such as
libpthread. The exact dependency may differ how Gauche is configured, and can be checked
by running system-provided tools, such as 1dd on most Unix systems and MinGW or otool
-L on OSX, on the generated standalone binaries. You may want to ensure the users have
required libraries.

e Currently we don’t yet have a convenient way to statically link extension libraries. We’re
working on it.

e If Gauche is configured to use gdbm, it is linked to the standalone binary by default, hence
the binary itself is covered by GPL. In case if you need to distribute binaries under BSD
license, you need to give -D GAUCHE_STATIC_EXCLUDE_GDBM flag to build-standalone. It
makes build-standalone not to link gdbm (and your script won’t be able to use it).

Chapter 3: Programming in Gauche 40

e If you build Gauche with mbedTLS support (if you have libmbedtls on your machine,
Gauche include its support by default), the resulting standalone binary also depends on
libmbedtls DSO files. If you're not sure mbedTLS DSO files are available on target machines,
you can exclude rfc.tls.mbed module by giving -D GAUCHE_STATIC_EXCLUDE_MBED flag to
build-standalone.

Using build-standalone

gosh build-standalone [options| script-file [library-file . . .| [Program]
Create a stand-alone binary to execute a Gauche program in script-file. It is executed as if
it is run as gosh script-file, with a few differences.

The main thing is that since script-file is no longer loaded from file, code that references
paths relative to script-file won’t work. One example is (add-load-path dir :relative)
(see Section 6.22.1 [Loading Scheme file], page 264). Auxiliary library files required by script-
file must be explicitly listed as library-file ..., so that they are bundled together into the
executable.

The following command-line options are recognized.

-o outfile [Command Option]
Specifies output executable filename. When omitted, the basename of script-file without
extension is used. (Or, on Windows, swapping extension with .exe).

-D var[=val] [Command Option]
Add C preprocessor definitions while compiling the generated C code. An important use case
of this option is to exclude gdbm dependency from the generated binaries, by specifying -D
GAUCHE_STATIC_EXCLUDE_GDBM. Note that you need a whitespace between -D and var.

This option can be specified multiple times.

-I load-path [Command Option]
Specifies the load path where library-file ... are searched. The names given to library-file
must match how they are loaded or used. If such paths are not relative to the directory you
run build-standalone, you have to tell where to find those libraries with this option.

For example, suppose you have this structure:

project/src/
+-———= main.scm
| (use myscript.util)
+-———- myscript/util.scm
(define-module myscript.util ...)

If you run build-standalone in the directory as src, you can just say this:
gosh build-standalone main.scm myscript/util.scm

But if you run it under project, you need to say this:
gosh build-standalone -I src src/main.scm myscript/util.scm

Another example; you have a separate library directory:

project/
o src/main.scm
| (use myscript.util)
+-———- lib/myscript/util.scm
(define-module myscript.util ...)

If you run build-standalone in src, you say this:

gosh build-standalone -I ../lib main.scm myscript/util.scm

41

Or, if you run it in project, you say this:
gosh build-standalone -I 1ib src/main.scm myscript/util.scm

This option can be specified multiple times. Note that a whitespace is required between -I
and load-path.

--header-dir dir [Command Option]
--library-dir dir [Command Option]
These tells build-standalone where to find Gauche C headers and static libraries.
If you’ve installed Gauche on your system, build-standalone automatically finds these from
the installed directory and you don’t need to worry about them. Use these option only when
you need to use Gauche runtime that’s not installed.

42

4 Core syntax

4.1 Lexical structure

Gauche extends R7RS Scheme lexical parser in some ways. Besides, because of historical reasons,
a few of the default lexical syntax may conflict R7RS specification. You can set a reader mode
to make it R7RS compliant.

Hash-bang directives
Tokens beginning with #! may have special meanings to the reader. R7RS defines
two of such directives—#!fold-case and #!no-fold-case, which switches whether
symbols are read in case-folding or non-case-folding mode, respectively.

see Section 4.1.2 [Hash-bang token]|, page 45, below, for all the directives Gauche
has.

Square brackets
Gauche adopts the R6RS syntax that regards [] the same as (). Both kind of
parentheses are equivalent, but the kind of corresponding open and close parenthe-
ses must match. Some seasoned Lisper may frown on them, but it helps visually
distinguish different roles of parentheses.

A general convention is to use [] for groupings other than function and macro
application. If such grouping nests, however, use () for outer groupings. Examples:

(cond [(testl x) (y 2)]
[(test2 x) (s t)]
[else (u v)1)

(let ([x (foo a b)]
[y (bar c d)1)
(baz x y))

It is purely optional, so you don’t need to use them if you don’t like them. R7RS
doesn’t adopt this syntax and leaves [] for extensions, so it is safe to stick to () in
portable R7RS programs. (If the reader is in strict-r7 mode, an error is signalled
when [] is used. See Section 6.21.7.2 [Reader lexical mode], page 253, for the
details.)

Scheme-specific modes of some editors (e.g. Quack on Emacs) allows you to type
just) and inserts either] or) depending on which kind parenthesis it is closing.
We recommend using such modes if you use this convention.

Symbol names
Symbol names are case sensitive by default (see Section 2.4 [Case-sensitivity],
page 14). Symbol name can begin with digits, +” or ’-’, as long as the entire token
doesn’t consist valid number syntax. Other weird characters can be included in a
symbol name by surrounding it with ’|’; e.g. ’|this is a symbol|’. See Section 6.7
[Symbols], page 149, for details.

Numeric literals
Either integral part or fraction part of inexact real numbers can be omitted if it is
zero, i.e. 30., .25, -.4 are read as real numbers. The number reader recognizes
'#’ as insignificant digits. Complex numbers can be written both in the rectangular
format (e.g. 1+0.31i) and in the polar format (e.g. 3.001.57). Inexact real numbers
include the positive infinity, the negative infinity, and NaN, which are represented
as +inf.0, -inf.0 and +nan.0, respectively. (-nan.0 is also read as NaN.)

Chapter 4: Core syntax 43

As an extension of Gauche, a character _ can be inserted in or around a sequence of
digits in number literals, as far as the literal is explicitly prefixed (#e, #x, etc). Those
_’s are just ignored. It is to improve readability, e.g. #61100_1010_1111_1110.

Gauche also adopts Common-Lisp style radix prefixed numeric literals, e.g. #3r120
(120 in base-3, 15 in decimal). Radix between 2 and 36 are recognized; alphabetic
letters a-zA-Z are used beyond decimal.
For the polar notation of complex numbers, Gauche allows the suffix pi to denote
the phase by multiples of pi. The Scheme syntax use radians for the phase, but
you can only approximate pi with the floating point numbers, so it can’t represent
round numbers except zero angle.

gosh> 203.141592653589793

-2.0+2.4492935982947064e-161
With the pi suffix, you can get a round numbers.

gosh> 2@1pi

-2.0

gosh> 2@0.5pi
0.0+2.01

gosh> 20-0.5pi
0.0-2.01

Hex character escapes

You can denote a character using hexadecimal notation of the character code in some
literals; specifically, character literals, charcter set literals, string literals, symbols,
regular expression literals.

R7RS adopted a hex escape notation \xNNNN; for strings and symbols surrounded
by vertical bars, and #\xNNNN for characters. The number of digits is variable, and
the character code is Unicode codepoint.

Gauche had been using two types of escapes; \u and \x. In general, u is for Unicode
codepoint, while x is for the character code in the internal encoding. Besides, except
character literals, we used fixed number of digits, instead of using the terminator ;
as in R7RS.

Since 0.9.4, we interpret \x-escape as R7TRS whenever if it consists a valid R7RS
hex-escape, and if not, try to interpret it as legacy Gauche hex-escape.

Although rarely, there are cases that can interpreted both in R7RS syntax and
legacy Gauche syntax, but yielding different characters. Reading legacy files with
such literals in the current Gauche may cause unexpected behavior. You can switch
the reader mode so that it becomes backward-compatible. See Section 6.21.7.2
[Reader lexical mode], page 253, for the details.

Ezxtended sharp syntaz

Many more special tokens begins with '#’ are defined. See the table below.

4.1.1 Sharp syntax

The table below lists sharp-syntaxes.

#!

#ll

[R6RS][RTRS][SRFI-22] It is either a beginning of
an interpreter line (shebang) of a script, or a spe-
cial token that affects the mode of the reader. See
‘hash-bang token’ section below.

Introduces an interpolated string. See
Section 6.11.4 [String interpolation], page 166.

##, #3$, #), #&, #° Unused.

Chapter 4: Core syntax

#0 ... #9

#<
#=, #>
#7

#0
#a
#b
#c
#d
#e
#£f

#g, #h

#i

#j, #k, #1, #m, #n
#o

#p, #q, #r

#s

#t

#u

#v, #w
#x
#y, #z
#[

#\

#1, 4", #_

[R7RS] Introduces a vector.

Unused.

Bitvector or an incomplete string. See Section 6.11
[Strings], page 164.

Unused.

[SRFI-10] Introduces reader constructor syntax.
Unused.

Introduces a literal regular expression. See
Section 6.12 [Regular expressions|, page 177.

#n#, #n=: [SRFI-38] Shared substructure definition
and reference.

#nR, #nr: Radix prefixed numeric literals.
Uninterned symbol. See Section 6.7 [Symbols],
page 149.

[SRFI-62] S-expression comment. Reads next one
S-expression and discard it.

Introduces an unreadable object.

Unused.

Introduces debug macros. See Section 3.4 [Debug-
ging], page 31.

Unused.

Unused.

[R7RS] Binary number prefix.

Unused.

[R7RS] Decimal number prefix.

[R7RS] Exact number prefix.

[R7TRS] Boolean false, or introducing R7RS uni-
form vector. See Section 6.13.2 [Uniform vectors],
page 191. R7RS defines both #f and #false as a
boolean false value.

Unused.

[R7RS] Inexact number prefix.

Unused.

[R7TRS] Octal number prefix.

Unused.

[R7RS vector.@] introducing R7RS uniform vector.
See Section 6.13.2 [Uniform vectors], page 191.
[R7RS] Boolean true. R7RS defines #t and #true
as a boolean true value.

[R7TRS vector.@] introducing R7RS uniform vec-
tor. See Section 6.13.2 [Uniform vectors], page 191.
R7RS uses #u8 prefix for bytevectors, which is
compatible to u8 uniform vectors.

Unused.

[R7RS] Hexadecimal number prefix.

Unused.

Introduces a literal character set. See Section 6.10
[Character sets|, page 159.

[R7TRS] Introduces a literal character. See
Section 6.9 [Characters], page 154.

Unused.

Chapter 4: Core syntax 45

#¢ Legacy syntax for string interpolation, superseded
by #".

#{ Unused.

#1 [SRFI-30] Introduces a block comment. Comment
ends by matching | #’.

#}, # Unused.

4.1.2 Hash-bang token

A character sequence #! has two completely different semantics, depending on how and where
it occurs.

If a file begins with #!/ or #! (hash, bang, and a space), then the reader assumes it is an
interpreter line (shebang) of a script and ignores the rest of characters until the end of line.
(Actually the source doesn’t need to be a file. The reader checks whether it is the beginning of
a port.)

Other than the above case, #!identifier is read as a token with special meanings. This
kind token can be a special directive for the reader, instead of read as a datum.

By default, the following tokens are recognized.

#!fold-case

#!no-fold-case
Switches the reader’s case sensitivity; #!fold-case makes the reader case insen-
sitive, and #!no-fold-case makes it case sensitive. (Also see Section 2.4 [Case-
sensitivity|, page 14).

#!r6rs This token is introduced in R6RS and used to indicate the program strictly conforms
R6RS. Gauche doesn’t conform R6RS, but currently it just issues warning when it
sees #!r6rs token, and it keeps reading on.

#!r7rs Make the reader strict-r7 mode, that complies R7TRS. See Section 6.21.7.2 [Reader
lexical mode]|, page 253, for the details.

#!gauche-legacy
Make the reader legacy mode, that is compatible to Gauche 0.9.3 and before. See
Section 6.21.7.2 [Reader lexical mode], page 253, for the details.

4.2 Literals

quote datum [Special Form]
[R7RS base] Evaluates to datum.

(quote x) = x
(quote (1 2 3)) = (1 2 3)

>datum [Reader Syntax]
[R7RS] Equivalent to (quote datum).

’X = X
’123) = (1223)

Note: Literals are immutable. You’ll get an error if you try to change, for example, a quoted
pair with set-car! or a literal string with string-set!. Mutability may be managed differently
for each type, so some object may not raise an error even if it appears in a part of literals (it is
often the case with user-defined class with read-time constructor, see Section 6.21.7.3 [Read-time
constructor], page 254. However, if you ever modify a literal data, it is not guaranteed that the
program runs correctly.

Chapter 4: Core syntax 46

4.3 Making procedures

lambda formals body . .. [Special Form]

= formals body . .. [Special Form]
[R7RS+] Evaluates to a procedure. The environment in effect when this expression is evalu-
ated is stored in the procedure. When the procedure is called, body is evaluated sequentially
in the stored environment extended by the bindings of the formal arguments, and returns the
value(s) of the last expression in the body.

~ is a concise alias of lambda. It is Gauche’s extension.

(lambda (a b) (+ a b))
= procedure that adds two arguments

((lambda (a b) (+ ab)) 12) = 3

(CCab) (+ab))12) = 3
Gauche also extends R7RS lambda to take extended syntax in formals to specify optional
and keyword arguments easily. The same functionality can be written in pure R7RS, with
parsing variable-length arguments explicitly, but the code tends to be longer and verbose. It
is recommended to use extended syntax unless you're writing portable code.

Formals should have one of the following forms:

e (variable ...) : The procedure takes a fixed number of arguments. The actual argu-
ments are bound to the corresponding variables.

((lambda (a) a) 1) = 1

((lambda (a) a) 1 2) = error - wrong number of arguments

e variable : The procedure takes any number of arguments. The actual arguments are
collected to form a new list and bound to the variable.

((lambda a a) 1 23) = (1 2 3)

e (variable_O ... variable_N-1 . variable_N) : The procedure takes at least N argu-
ments. The actual arguments up to N is bound to the corresponding variables. If more
than N arguments are given, the rest arguments are collected to form a new list and
bound to variable_N.

((lambda (a b . ¢) (print "a=" a " b="b " c="c)) 1 2 3 4 b)
= prints a=1 b=2 c=(3 4 5)

e (variable ... extended-spec ...) : Extended argument specification. Zero or more
variables that specifies required formal arguments, followed by an extended spec, a list
beginning with a keyword :optional, :key or :rest.

The extended-spec part consists of the optional argument spec, the keyword argument
spec and the rest argument spec. They can appear in any combinations.

:optional optspec ...
Specifies optional arguments. Each optspec can be either one of the following
forms:

variable

(variable init-expr)
The variable names the formal argument, which is bound to the value of the
actual argument if given, or the value of the expression init-expr otherwise.
If optspec is just a variable, and the actual argument is not given to it,
then variable will be bound to #<undef> (see Section 6.5 [Undefined values],
page 134).

Chapter 4: Core syntax 47

The expression init-expr is only evaluated if the actual argument for variable
is not given. The scope in which init-expr is evaluated includes the preceding
formal arguments.

((lambda (a b :optional (c (+ a b))) (list a b c))
12) = (123)

((lambda (a b :optional (c (+ a b))) (list a b c))
12-1) = (1 2-1)

((lambda (a b :optional c) (list a b c))
12) = (1 2 #<undef>)

((lambda (:optional (a 0) (b (+ a 1))) (list a b))
) = (0 1)
The procedure signals an error if more actual arguments than the number of
required and optional arguments are given, unless it also has :key or :rest
argument spec.

((lambda (:optional a b) (list a b)) 1 2 3)
= error - too many arguments

((lambda (:optional a b :rest r) (list a b r)) 1 2 3)
= (12 (3))

:key keyspec ... [:allow-other-keys [variable]]
Specifies keyword arguments. Each keyspec can be either one of the following
forms.

variable

(variable init-expr)

((keyword variable) init-expr)
The variable names the formal argument, which is bound to the actual ar-
gument given with the keyword of the same name as variable. When the
actual argument is not given, init-expr is evaluated and the result is bound
to variable in the second and third form, or #<undef> is bound in the first
form.

(define f (lambda (a :key (b (+ a 1)) (c (+ b 1)))
(list a b ©)))

(f 10) = (10 11 12)
(f 10 :b 4) = (10 4 5)
(f 10 :c 8) = (10 11 8)

(f 10 :c 1 :p 3) = (10 3 1)
With the third form you can name the formal argument differently from the
keyword to specify the argument.
((lambda (:key ((:aa a) -1)) a) :aa 2)
= 2

By default, the procedure with keyword argument spec raises an error
if a keyword argument with an unrecognized keyword is given. Giving
:allow-other-keys in the formals suppresses this behavior. If you give
variable after :allow-other-keys, the list of unrecognized keywords and
their arguments are bound to it. Again, see the example below will help to
understand the behavior.

Chapter 4: Core syntax 48

((lambda (:key a) a)
ta 1 :b 2) = error - unknown keyword :b

((lambda (:key a :allow-other-keys) a)
tal b2 =1

((lambda (:key a :allow-other-keys z) (list a z))

tal :b2) = (1 (:b2))
When used with :optional argument spec, the keyword arguments are
searched after all the optional arguments are bound.

((lambda (:optional a b :key c) (list a b c))

12:¢c3 = (1223)

((lambda (:optional a b :key c) (list a b c))
:c 3) = (:c 3 #<undef>)

((lambda (:optional a b :key c) (list a b c))
1 :c 3) = error - keyword list not even

:rest variable
Specifies the rest argument. If specified without :optional argument spec,
a list of remaining arguments after required arguments are taken is bound to
variable. If specified with :optional argument spec, the actual arguments
are first bound to required and all optional arguments, and the remaining
arguments are bound to variable.
((lambda (a b :rest z) (list a b z))
12345) = (12 (345))

((lambda (a b :optional c d :rest z) (list a b c d z))
12345) = (1234 ()

((lambda (a b :optional ¢ d :rest z) (list a b c d z))

12 3) = (1 2 3 #<undef> ())
When the rest argument spec is used with the keyword argument spec, both
accesses the same list of actual argument—the remaining arguments after
required and optional arguments are taken.

((lambda (:optional a :rest r :key k) (list a r k))

1:k3 = (1 (k33

See also let-optionals*, let-keywords and let-keywords* macros in Section 6.15.4
[Optional argument parsing], page 213, for an alternative way to receive
optional /keyword arguments within the spec of R7RS.

“c body ... [Macro]
A shorthand notation of (lambda (¢) body ...). where ¢ can be any character in #[_a-z].

(map ("x (* x x)) ’(1 2345)) = (149 16 25)

cut expr-or-slot expr-or-slot2 . . . [Macro]
cute expr-or-slot expr-or-slot2 . .. [Macro]
[SRFI-26] Convenience macros to notate a procedure compactly. This form can be used to
realize partial application, a.k.a sectioning or projection.
Each expr-or-slot must be either an expression or a symbol <>, indicating a ’slot’. The last
expr-or-slot can be a symbol <. ..>, indicating a 'rest-slot’. Cut expands into a lambda form

Chapter 4: Core syntax 49

that takes as many arguments as the number of slots in the given form, and whose body is
an expression

(expr-or-slot expr-or-slot2 ...)

where each occurrence of <> is replaced to the corresponding argument. In case there is a
rest-slot symbol, the resulting procedure is also of variable arity, and all the extra arguments
are passed to the call of expr-or-siot. See the fourth example below.

(cut cons (+ a 1) <>) (lambda (x2) (cons (+ a 1) x2))
(cut list 1 <> 3 <> 5) (lambda (x2 x4) (list 1 x2 3 x4 5))
(cut list) (lambda () (1list))
(cut list 1 <> 3 <...>)

= (lambda (x2 . xs) (apply list 1 x2 3 xs))
(cut <> a b) (lambda (f) (f a b))

;3 Usage
(map (cut * 2 <>) ’(1 2 3 4))
(for-each (cut write <> port) exprs)
Cute is a variation of cut that evaluates expr-or-slots before creating the procedure.

(cute cons (+ a 1) <>)
= (let ((xa (+ a 1))) (lambda (x2) (cons xa x2)))

Gauche provides a couple of different ways to write partial applications concisely; see the $
macro below, and also the pa$ procedure (see Section 6.15.3 [Combinators], page 211).

$ arg ... [Macro]
A macro to chain applications, hinted from Haskell’s $ operator (although the meaning is
different). Within the macro arguments arg ..., $ delimits the last argument. For example,
the following code makes the last argument for the procedure £ to be (g cd ...)

fabgcd...)
= (fab((gcd...))

The $ notation can be chained.
fabgcd$hef ...)
= (fab(gcdthef ...)))

If $* appears in the argument list instead of $, it fills the rest of the arguments, instead of
just the last argument.

(fabxgcd...)
= (apply f ab(gcd...))
fab$*xg$h$xhh ...)

N\
I &

(apply f a b (g (apply h (hh ...))))

Furthermore, if the argument list ends with $ or $*, the whole expression becomes a procedure
expecting the last argument(s).

fabgcdhef)

= (lambda (arg) (f ab (g c d (h e f arg))))

= (.$ (cut £ a b <>) (cut g cd<>) (cut hef <>))
fabgcdhef $x)

(lambda args (f a b (g ¢ d (apply h e f args))))

(.$ (cut f a b <>) (cut g cd<>) (cut hef <...>))

The more functional the code becomes, the more you are tempted to write it as a chain of
nested function calls. Scheme’s syntax can get awkward in such code. Close parentheses tend

~\
Ml e

Chapter 4: Core syntax 50

to clutter at the end of expressions. Inner applications tends to pushed toward right columns
with the standard indentation rules. Compare the following two code functionally equivalent
to each other:

(intersperse ":"
(map transform-it
(delete-duplicates (map cdr
(group-sequence input)))))

($ intersperse ":"
$ map transform-it
$ delete-duplicates
$ map cdr $ group-sequence input)
It is purely a matter of taste, and also this kind of syntax sugars can be easily abused. Use
with care, but it may work well if used sparingly, like spices.

As a corner case, if neither $ nor $* appear in the argument list, it just calls the function.
It is useful when the function has long name and you don’t want to indent arguments too
further right.

($ fabc) = (fabc)

case-lambda clause ... [Macro]
[R7RS case-lambda] Each clause should have the form (formals expr ...), where formals is
a formal arguments list as for lambda.

This expression evaluates to a procedure that accepts a variable number of arguments and is
lexically scoped in the same manner as procedures resulting from lambda expressions. When
the procedure is called with some arguments, then the first clause for which the arguments
agree with formals is selected, where agreement is specified as for the formals of a lambda
expression. The variables of formals are bound to the given arguments, and the expr ...
are evaluated within the environment.

It is an error for the arguments not to agree with the formals of any clause.

(define f
(case-lambda
[() ’zero]
[(a) ‘(one ,a)]
[(a b) ‘(two ,a ,b)]))

(£) = zero

(f 1) = (one 1)

(f12) = (two 1l 2)

(f 1 2 3) = Error: wrong number of arguments to case lambda

(define g
(case-lambda
[() ’zero]
[(a) ‘(one ,a)]
[(a . b) ‘(more ,a ,0b)]1))

(g) = zero

(g 1 = (one 1)

(g 1 23) = (more 1 2 3)
Note that the clauses are examined sequentially to match the number of arguments, so in the
following example g2 never returns (one ...).

Chapter 4: Core syntax 51

(define g2
(case-lambda
[O) ’zero]
[(a . b) ‘(more ,a ,@b)]
[(a) ‘(one ,a)]))

(g2 1) = (more 1)

4.4 Assignments

set! symbol expression [Special Form]

set! (proc arg ...) expression [Special Form]
[R7TRS+ base|[SRFI-17] First, expression is evaluated. In the first form, the binding of symbol
is modified so that next reference of symbol will return the result of expression. If symbol
is not locally bound, the global variable named symbol must already exist, or an error is
signaled.
The second form is a “generalized set!” specified in SRFI-17. It is a syntactic sugar of the
following form.

((setter proc) arg ... expression)
Note the order of the arguments of the setter method differs from CommonLisp’s setf.
Some examples:

(define x 3)
(set! x (list 1 2))
x = (1 2)

(set! (car x) b)

X = (5 2)
set!-values (var ...) expr [Macro]
Sets values of multiple variables at once. Expr must yield as many values as var Each

value is set to the corresponding var.

(define a 0)

(define b 1)

(set!-values (a b) (values 3 4))
a = 3

b= 4

(set!-values (a b) (values b a))
a = 4

b= 3

setter proc [Function]
[SRFI-17] Returns a setter procedure associated to the procedure proc. If no setter is asso-
ciated to proc, its behavior is undefined.

A setter procedure g of a procedure f is such that when used as (g ab ... v), the next
evaluation of (f ab ...) returns v.
To associate a setter procedure to another procedure, you can use the setter of setter, like
this:

(set! (setter f) g)
A procedure’s setter can be “locked” to it. System default setters, like set-car! for car, is

locked and can’t be set by the above way. In order to lock a setter to a user defined procedure,
use getter-with-setter below.

Chapter 4: Core syntax 52

If proc is not a procedure, a setter generic function of object-apply is returned; it allows the
applicable object extension to work seamlessly with the generalized set!. See Section 6.15.6
[Applicable objects], page 215, for the details.

has-setter? proc [Function]
Returns #t if a setter is associated to proc.

getter-with-setter get set [Function]
[SRFI-17] Takes two procedure get and set. Returns a new procedure which does the same
thing as get, and its setter is locked to set.

The intention of this procedure is, according to the SRFI-17 document, to allow implemen-
tations to inline setters efficiently. Gauche hasn’t implement such optimization yet.

A few macros that adopts the same semantics of generalized set! are also provided. They
are built on top of set!.

push! place item [Macro]
Conses item and the value of place, then sets the result to place. place is either a variable or
a form (proc arg ...), as the second argument of set!. The result of this form is undefined.

(define x (1list 2))
(push! x 3)
x = (32)

(push! (cdr x) 4)
x = (342)

When place is a list, it roughly expands like the following.
(push! (foo x y) item)

(let ((tfoo foo)
(tx %)
(ty y))
((setter tfoo) tx ty (cons item (tfoo tx ty))))

Note: Common Lisp’s push macro takes its argument reverse order. I adopted this order
since it is consistent with other destructive operations. Perl’s push function takes the same
argument order, but it appends item at the end of the array (Perl’s unshift is closer to
push!). You can use a queue (see Section 12.17 [Queue], page 768) if you need a behavior of
Perl’s push.

pop! place [Macro]
Retrieves the value of place, sets its cdr back to place and returns its car.
(define x (list 1 2 3))
(pop! x) = 1
x = (2 3)

(define x (vector (list 1 2 3)))
x = #((1 2 3))

(pop! (vector-ref x 0)) = 1

x = #((2 3))

Note: This works the same as Common Lisp’s pop. Perl’s pop pops value from the end of
the sequence; its shift does the same thing as pop!.

Chapter 4: Core syntax 53

inc! place :optional delta [Macro]

dec! place :optional delta [Macro]
Evaluates the value of place. It should be a number. Adds (inc!) or subtracts (dec!) delta
to/from it, and then stores the result to place. The default value of delta is 1.

This is like Common Lisp’s incf and decf, except that you can’t use the result of inc! and
dec!.

update! place proc [Macro]
Generalized form of push! etc. Proc must be a procedure which takes one argument and
returns one value. The original value of place is passed to the proc, then its result is set to
place.

(define a (cons 2 3))
(update! (car a) (lambda (v) (x v 3)))
a= (6. 3)

(update! (cdr a) (cut - <> 3))
a= (6.0)

4.5 Conditionals

if test consequent alternative [Special Form]

if test consequent [Special Form]
[R7RS base| Test is evaluated. If it yields a true value, consequent is evaluated. Otherwise,
alternative is evaluated. If alternative is not provided, it results undefined value.

(if (number? 3) ’yes ’no) = yes
(if (number? #f) ’yes ’no) = no

(let ((x >(1 . 2)))
(if (pair? x)
(values (car x) (cdr x))
(values #f #£f)))
= 1 and 2

cond clausel clause2 . .. [Special Form]
[R7RS+ base|[SRFI-61] Each clause must be the form

(test expr ...)
(test => expr)
(test guard => expr)
(else expr expr2 ...)

The last form can appear only as the last clause.

cond evaluates test of each clauses in order, until it yields a true value. Once it yields true,
if the clause is the first form, the corresponding exprs are evaluated and the result(s) of last
expr is(are) returned; if the clause is the second form, the expr is evaluated and it must yield
a procedure that takes one argument. Then the result of test is passed to it, and the result(s)
it returns will be returned.

The third form is specified in SRFI-61. In this form, test can yield arbitrary number of
values. The result(s) of test is(are) passed to guard; if it returns a true value, expr is applied
with an equivalent argument list, and its result(s) is(are) returned. If guard returns #£f, the
evaluation proceeds to the next clause.

If no test yields true, and the last clause is not the fourth form (else clause), an undefined
value is returned.

Chapter 4: Core syntax 54

If the last clause is else clause and all tests are failed, exprs in the else clause are evaluated,
and its last expr’s result(s) is(are) returned.
(cond ((> 3 2) ’greater)
((< 3 2) ’less)) = greater
(cond ((> 3 3) ’greater)
((< 3 3) ’less)
(else ’equal)) = equal
(cond ((assv ’b ’((a 1) (b 2))) => cadr)
(else #f)) = 2

case key clausel clause2 . .. [Special Form]
[R7TRS+ base|[SRFI-87] Key may be any expression. Each clause should have the form

((datum ...) expr expr2 ...)

((datum ...) => proc)
where each datum is an external representation of some object. All the datums must be
distinct. The last clause may be an “else clause,” which has the form

(else expr expr2 ...)

(else => proc)
First, key is evaluated and its result is compared against each datum. If the result of eval-
uating key is equivalent (using eqv?, see Section 6.2.1 [Equality], page 106), to a datum,
then the expressions in the corresponding clause are evaluated sequentially, and the result(s)
of the last expression in the clause is(are) returned from the case expression. The forms
containing => are specified in SRFI-87. In these forms, the result of key is passed to proc,
and its result(s) is(are) returned from the case expression.

If the result of evaluating key is different from every datum, then if there is an else clause
its expressions are evaluated and the result(s) of the last is(are) the result(s) of the case
expression; otherwise the result of the case expression is undefined.
(case (x 2 3)
((2 35 7) ’prime)
((1 4 6 89) ’composite)) = composite

(case (car ’(c d))
((a) ’a)
((b) ’b)) = undefined

(case (car ’(c d))
((a e i o u) ’vowel)
((w y) ’semivowel)
(else ’consonant)) = consonant

(case 6
((2 468) => (cut + <> 1))
(else => (cut - <> 1))) = 7

(case 5
((2 46 8) => (cut + <> 1))
(else => (cut - <> 1))) = 4

ecase key clausel clause2 . .. [Macro]
This works exactly like case, except when there’s no else clause and the value of key expres-
sion doesn’t match any of datums provided in clauses. While case form returns undefined
value for such case, ecase raises an error.

Chapter 4: Core syntax 55

It is taken from Common Lisp. It’s a convenient form when you want to detect when unex-
pected value is passed just in case.

(ecase 5 ((1) ’a) ((2 3) ’b) ((4) ’c))
= ERROR: ecase test fell through: got 5, expecting one of (1 2 3 4)

and test ... [Special Form]
[R7RS base] The test expressions are evaluated from left to right, and the value of the first
expression that evaluates to a false value is returned. Any remaining expressions are not
evaluated. If all the expressions evaluate to true values, the value of the last expression is
returned. If there are no expressions then #t is returned.

(and (=2 2) (> 2 1)) = #t
(and (= 2 2) (< 2 1)) = #f
(and 1 2 ’c ’(f &) = (£ g
(and) = #t

or test ... [Special Form]
[R7TRS base] The test expressions are evaluated from left to right, and the value of the
first expression that evaluates to a true value is returned. Any remaining expressions are
not evaluated. If all expressions evaluate to false values, the value of the last expression is
returned. If there are no expressions then #f is returned.

(or (=22) > 2 1)) = #t
(or (=2 2) (k2 1)) = #t
(or #f #f #f) = #f
(or (memq ’b ’(a b c))
(/30) = (o)

when test exprl expr2 ... [Special Form]
unless test exprl expr2 . .. [Special Form]
[R7TRS base] Evaluates test. If it yields true value (or false in case of unless), exprl and
expr2 ... are evaluated sequentially, and the result(s) of the last evaluation is(are) returned.

Otherwise, undefined value is returned.

assume test-expr message . . . [Macro]
[SRFI-145] Evaluates text-expr and returns its value.

Also, this form declares the programmer’s intent that the code following this path always
satisfy test-expr.

Currently, Gauche always signals an error with message . .. if text-expr evaluates to #f.

(define (real-sqrt x)
(assume (and (real? x) (>= x 0)))
(sqrt x))

gosh> (real-sqrt -1)

*x** ERROR: Invalid assumption: (and (real? x) (>= x 0))
Note: This form is advisory—it isn’t guaranteed for an error to be signaled when test-expr
fails. For example, we may add an optimization option that omits testing in speed-optimized
code in future. We may also enhance the compiler to generate better code using the given
information—for example, in the above real-sqrt code, the compiler could theoretically
deduce that (sqrt x) only needs to work as real functions, so it would be able to generate
specialized code. Use this form to inform the compiler and the reader your intention.

assume-type expr type [Macro]
Evaluates expr, and Checks if the value has type type. If not, raises an error. The result of
expr is returned.

Chapter 4: Core syntax 56

As type, you can specify a Gauche class or a descriptive type. The value is of type if it
satisfies (of-type? value type) (see Section 6.1 [Types and classes|, page 102).

The type assumption may be used by the compiler future compilers for optimizations. In
order for the compiler to use the type constraint information, type must be an expression
statically computable at compile-time. That is, it must be either a class or a type constructor
expression, or a constant binding to them.

Note: Like assume, this form is advisory; it is not guaranteed that the check is performed,
nor expr is evaluated.

4.6 Binding constructs

let ((var expr) ...) body ... Special Form

[}
let* ((var expr) ...) body ... [Special Form]
letrec ((var expr) ...) body ... [Special Form]
letrec* ((var expr) ...) body ... [Special Form]

[R7RS base] Creates a local scope where var ... are bound to the value of expr ..., then
evaluates body Vars must be symbols, and there shouldn’t be duplicates. The value(s)
of the last expression of body ... becomes the value(s) of this form.

The four forms differ in terms of the scope and the order exprs are evaluated. Let evaluates
exprs before (outside of) let form. The order of evaluation of exprs is undefined, and the
compiler may reorder those exprs freely for optimization. Let* evaluates exprs, in the order
they appears, and each expr is evaluated in the scope where vars before it are bound.

Letrec evaluates exprs, in an undefined order, in the environment where vars are already
bound (to an undefined value, initially). letrec is necessary to define mutually recursive
local procedures. Finally, letrec* uses the same scope rule as letrec, and it evaluates expr
in the order of appearance.

(define x ’top-x)

(let ((x 3) (y x)) (cons x y)) = (3 . top-x)
(let* ((x 3) (y x)) (cons x y)) = (3 . 3)

(let ((cons (lambda (a b) (+ a b)))
(1ist (lambda (a b) (cons a (cons b 0)))))
(list 1 2)) = (12 . 0)

(letrec ((cons (lambda (a b) (+ a b)))
(1list (lambda (a b) (cons a (cons b 0)))))
(list 1 2)) = 3

You need to use letrec* if evaluation of one expr requires the value of var that appears
before the expr. In the following example, calculating the value of a and b requires the value
of cube, so you need letrec*. (Note the difference from the above example, where calculating
the value of list doesn’t need to take the value of cons bound in the same letrec. The value
of cons isn’t required until list is actually applied.)

(letrec* ((cube (lambda (x) (* x x x)))
(a (+ (cube 1) (cube 12)))
(b (+ (cube 9) (cube 10))))
(= ab)) = #t

This example happens to work with letrec in the current Gauche, but it is not guaranteed to
keep working in future. You just should not rely on evaluation order when you use letrec. In
retrospect, it would be a lot simpler if we only had letrec*. Unfortunately letrec preceded

Chapter 4: Core syntax 57

for long time in Scheme history and it’s hard to remove that. Besides, letrec does have
more opportunities to optimize than letrecx*.

letl var expr body ... [Macro]
A convenient macro when you have only one variable. Expanded as follows.

(let ((var expr)) body ...)

if-letl var expr then [Macro]
if-letl var expr then else [Macro]
This macro simplifies the following idiom:

(letl var expr
(if var then else))

rletl var expr body ... [Macro]
This macro simplifies the following idiom:

(letl var expr
body ...
var)

and-let* (binding ...) body ... [Macro]
[SRFI-2] In short, it works like 1et*, but returns #f immediately whenever the expression in
bindings evaluates to #£.

Each binding should be one of the following form:

(variable expression)
The expression is evaluated; if it yields true value, the value is bound to variable,
then proceed to the next binding. If no more bindings, evaluates body If
expression yields #f, stops evaluation and returns #f from and-let*.

(expressionx)
In this form, variable is omitted. Expression is evaluated and the result is used
just to determine whether we continue or stop further evaluation.

bound-variable
In this form, bound-variable should be an identifier denoting a bound variable.
If its value is not #f, we continue the evaluation of the clauses.

Let’s see some examples. The following code searches key from an assoc-list alist and returns
its value if found.

(and-let* ((entry (assoc key alist))) (cdr entry))
If arg is a string representation of an exact integer, returns its value; otherwise, returns 0:

(or (and-let* ((num (string->number arg))
((exact? num))
((integer? num)))
num)
0)
The following is a hypothetical code that searches a certain server port number from a few
possibilities (environment variable, configuration file, ...)

(or (and-let* ((val (sys-getenv "SERVER_PORT")))
(string->number val))
(and-let* ((portfile (expand-path "~/.server_port"))
((file-exists? portfile))
(val (call-with-input-string portfile port->string)))
(string->number val))
8080) ; default

Chapter 4: Core syntax 58

and-letl var test expl exp2 ... [Macro]
Evaluates test, and if it isn’t #f, binds var to it and evaluates expl exp2 Returns the
result(s) of the last expression. If test evaluates to #£f, returns #f.

This can be easily written by and-let* or if-letl as follows. However, we’ve written this
idiom so many times that it deserves another macro.

(and-letl var test
expl
exp2 ...)

(and-let* ([var test])
expl
exp2 ...)

(if-letl var test
(begin expl exp2 ...)
#1)

fluid-let ((var val) ...) body ... [Macro]
A macro that emulates dynamic scoped variables. Vars must be variables bound in the
scope including fluid-let form. Vals are expressions. Fluid-let first evaluates vals, then

evaluates body ..., with binding vars to the corresponding values during the dynamic scope
of body

Note that, in multithreaded environment, the change of the value of vars are visible from
all the threads. This form is provided mainly for the porting convenience. Use parameter
objects instead (see Section 6.16 [Parameters], page 219) for thread-local dynamic state.

(define x 0)
(define (print-x) (print x))

(fluid-let ((x 1))
(print-x)) = ;; prints 1

receive formals expression body . . . [Special Form]
[SRFI-8] This is the way to receive multiple values. Formals can be a (maybe-improper) list
of symbols. Expression is evaluated, and the returned value(s) are bound to formals like the
binding of lambda formals, then body ... are evaluated.

(define (divrem n m)
(values (quotient n m) (remainder n m)))

(receive (q r) (divrem 13 4) (list q r))
= @38 1D

(receive all (divrem 13 4) all)
= (3 1)

(receive (q . rest) (divrem 13 4) (list q rest))
= (3 (1))

Chapter 4: Core syntax 59

See also call-with-values in Section 6.15.8 [Multiple values|, page 218, which is the
procedural equivalent of receive. You can use define-values (see Section 4.10 [Defini-
tions], page 65) to bind multiple values to variables simultaneously. Also let-values and
let*-values below provides let-like syntax with multiple values.

let-values ((vars expr) ...) body ... [Macro]
[R7RS base] vars are a list of variables. expr is evaluated, and its first return value is bound
to the first variable in vars, its second return value to the second variable, and so on, then
body is evaluated. The scope of exprs are the outside of let-values form, like let.

(let-values (((a b) (values 1 2))
((c d) (values 3 4)))
(list abcd) = (1 2 3 4)

(let ((a 1) (b 2) (c 3) (d 4))
(let-values (((a b) (values c d))
((c d) (values a b)))
(list abcd))) = (3412

vars can be a dotted list or a single symbol, like the lambda parameters.
(let-values (((x . y) (values 1 2 3 4)))
y) = (2 3 4)
(let-values ((x (values 1 2 3 4)))
x) = (1 234)

If the number of values returned by expr doesn’t match what vars expects, an error is signaled.

let*-values ((vars expr) ...) body ... [Macro]
[R7RS base] Same as let-values, but each expr’s scope includes the preceding vars.

(let ((a 1) (b 2) (c 3) (d &)
(let*-values (((a b) (values c d))
((c d) (values a b)))
(list abc d)) = (34 3 4)

rec var expr [Macro]
rec (name . vars) expr ... [Macro]
[SRFI-31] A macro to evaluate an expression with recursive reference.

In the first form, evaluates expr while var in expr is bound to the result of expr. The second
form is equivalent to the followings.

(rec name (lambda vars expr ...))
Some examples:
;; constant infinite stream

(rec s (cons 1 (delay s)))

;; factorial function

(rec (f n)
(if (zero? n)
1

Gkcn (f (-n 1)))))

Chapter 4: Core syntax 60

4.7 Sequencing

begin form ... [Special Form]
[R7RS base] Evaluates forms sequentially, and returns the last result(s).
Begin doesn’t introduce new scope like let, that is, you can’t place "internal define" at the
beginning of forms generally. Semantically begin behaves as if forms are spliced into the
surrounding context. For example, toplevel expression like the following is the same as two
toplevel definitions:
(begin (define x 1) (define y 2))
Here’s a trickier example:
(let O
(begin
(define x 2)
(begin
(define y 3)
))
+x y))

(let O
(define x 2)
(define y 3)

+ x y))
begin0O exp0 expl . .. [Macro]
Evaluates exp0, expl, ..., then returns the result(s) of exp0. The name is taken from

MzScheme. This is called progl in CommonLisp.
Unlike begin, this does creates a new scope, for the begin0 form is expanded as follows.

(receive tmp expO
expl ...
(apply values tmp))

4.8 Iteration

do ((variable init [step]) . ..) (test expr ...) body . .. [Special Form]
[R7RS base]

1. Evaluates init . . . and binds variable . . . to each result. The following steps are evaluated
under the environment where variables are bound.

2. Evaluate test. If it yields true, evaluates expr ... and returns the result(s) of last expr.

3. Otherwise, evaluates body ... for side effects.

4. Then evaluates step ... and binds each result to a fresh variable ..., and repeat from
the step 2.

The following example loops 10 times while accumulating each value of i to j and returns it.

(do ((i 0 (+1i 1))
(G o &+ij
(=1 10) j)
(print j))
= 45 ; also prints intermediate values of j

Chapter 4: Core syntax 61

If step is omitted, the previous value of variable is carried over. When there’s no expr, the
non-false value returned by test becomes the value of the do expression.

Since do syntax uses many parentheses, some prefer using square brackets as well as paren-
theses to visually distinguish the groupings. A common way is to group each variable binding,
and the test clause, by square brackets.

(do ([1 0 (+1i 1]
[OH+13)D
[(= 1 10) j]
(print j))

Note: Unlike Common Lisp (and “for loops” in many languages), variable is freshly bound
for each iteration. The following example loops 5 times and creates a list of closures, each of
which closes the variable i. When you call each closures, you can see that each of them closes
different i at the time of the iteration they were created.

(define closures
(do ([1 0 (+ i 1)]
[c >O (cons (" 1) 1)
[(= i 5) (reverse c)]

))

((car closures)) = 0
((cadr closures)) = 1

let name ((var init) ...) body ... [Special Form]
[R7RS base| This variation of let is called “named let”. It creates the following procedure
and binds it to name, then calls it with init

(lambda (var ...) body ...)

This syntax itself isn’t necessarily related to iteration. However, the whole point of named
let is that the above lambda expression is within the scope of name—that is, you can call
name recursively within body. Hence this is used very often to write a loop by recursion
(thus, often the procedure is named loop, as in the following example.)

(let loop ([x 0] [y O
(if (= x 10)
y
(loop (+ x 1) (comns x y))))
= (9876543210

Of course you don’t need to loop with a named let; you can call name in non-tail position,
pass name to other higher-order procedure, etc. Named let exists since it captures a very
common pattern of local recursive procedures. Some Schemers even prefer named let to do,
for the better flexibility.

The following rewrite rule precisely explains the named let semantics. The tricky use of
letrec in the expansion is to make proc visible from body ... but not from init

(let proc ((var init) ...) body ...)

(Eietrec ((proc (lambda (var ...) body ...)))
proc)
init ...)

Chapter 4: Core syntax 62

dotimes ([variable] num-expr [result]) body ... [Macro]
dolist ([variable] list-expr [result]) body . .. [Macro]
Convenience loop syntaxes, imported from Common Lisp. They are not very Scheme-y, in
a sense that these rely on some side-effects in body Nevertheless these capture some

common pattern in day-to-day scripting.

You can use dotimes to repeat body . .. for a number of times given by num-expr, and dolist
to repeat body ... while traversing a list given by list-expr. While body ... is evaluated,
variable is bound to the current iteration count (in dotimes), or the current element in the
list (in dolist).

(dotimes (n 5) (write n))

= writes "01234"

(dolist (v ’(a b c d e)) (write v))
= writes "abcde"

If you don’t need to refer to variable, you can omit it. For example, the following example
prints year! 10 times:

(dotimes (10) (print "yeah!"))
If the third element (result) is given in dotimes or dolist, it is evaluated after all repetition is
done, and its result becomes the result of dotimes/dolist. While result is evaluated, variable

is bound to the number of repetitions (in dotimes) or () (in dolist). It is supported because
Common Lisp has it.

Note that a fresh variable is bound for each iteration, as opposed to Common Lisp where
variable is mutated. So if you create a closure closing variable, it won’t be overwritten by
the subsequent iteration.

If you need more than simple iteration, you can use do form, named let, or Section 11.10
[Eager comprehensions], page 670, which provides rich way to iterate.

while expr body . .. [Macro]
while expr => var body ... [Macro]
while expr guard => var body . .. [Macro]

Var is an identifier and guard is a procedure that takes one argument.

In the first form, expr is evaluated, and if it yields a true value, body ... are evaluated. It
is repeated while expr yields true value.

In the second form, var is bound to a result of expr in the scope of body

In the third form, the value expr yields are passed to guard, and the execution of body ...
is repeated while guard returns a true value. var is bound to the result of expr.

The return value of while form itself isn’t specified.

(let ((a (0123 4)))
(while (pair? a)
(write (pop! a)))) = prints "01234"

(let ((a ’(0 1 2 3 #f 5 6)))
(while (pop! a) integer? => var
(write var))) = prints "0123"

until expr body ... [Macro]

until expr guard => var body . .. [Macro]
Like while, but the condition is reversed. That is, the first form repeats evaluation of expr
and body . .. until expr yields true. In the second form, the result of expr is passed to guard,
and the execution is repeated until it returns true. Var is bound to the result of expr.

Chapter 4: Core syntax 63

(The second form without guard isn’t useful in until, since var would always be bound to
#f).
The return value of until form itself isn’t specified.
(let ((a 2(0 12 3 4)))
(until (null? a)
(write (pop! a)))) = prints "01234"

(until (read-char) eof-object? => ch
(write-char ch))
= reads from stdin and writes char until EOF is read

4.9 Quasiquotation

quasiquote template [Special Form]
[R7TRS base] Quasiquotation is a convenient way to build a structure that has some fixed
parts and some variable parts. See the explanation below.

‘template [Reader Syntax]
[R7RS] The syntax ‘x is read as (quasiquote x).

unquote datum . .. [Special Form]

unquote-splicing datum ... [Special Form]

[R7TRS base] These syntaxes have meaning only when they appear in the template of
quasiquoted form. R5RS says nothing about these syntaxes appear outside of quasiquote.
Gauche signals an error in such case, for it usually indicates you forget quasiquote somewhere.
R5RS only allows unquote and unquote-splicing to take a single argument; it is undefined
if you have (unquote) or (unquote x y) inside quasiquoted form. R6RS allows zero or
multi-arguments, and Gauche follows that.

,datum [Reader Syntax]

,@datum [Reader Syntax]
[R7RS] The syntaxes ,x and ,@x are read as (unquote x) and (unquote-splicing x), re-
spectively.

Quasiquote basics

Suppose you want to create a list (foo bar x y), where foo and bar are symbols, and x and y
are the value determined at runtime. (For the sake of explanation, let’s assume we have variables
x and y that provides those values.) One way to do that is to call the function list explicitly.
(et ((x 0) (y 1))
(1ist ’foo ’bar x y)) = (foo bar 0 1)

You can do the same thing with quasiquote, like this:
(let ((x 0) (y 1))
‘(foo bar ,x ,y)) = (foo bar 0 1)

The difference between the two notations is that the explicit version quotes the parts that
you want to insert literally into the result, while the quasiquote version unquotes the parts that
you don’t want to quote.

The quasiquote version gets simpler and more readable when you have lots of static parts
with scattered variable parts in your structure.

That’s why quasiquote is frequently used with legacy macros, which are basically a procedure
that create program fragments from variable parts provided as macro arguments. See the simple-
minded my-if macro that expands to cond form:

(define-macro (my-if test then else)

Chapter 4: Core syntax 64

“(cond (,test ,then)
(else ,else)))

(macroexpand ’(my-if (< n 0) n (- n)))
= (cond ((< n 0) n) (else (- n)))

Note the two elses in the macro definition; one isn’t unquoted, thus appears literally in
the output, while another is unquoted and the corresponding macro argument is inserted in its
place.

Of course you can use quasiquotes unrelated to macros. It is a general way to construct
structures. Some even prefer using quasiquote to explicit construction even most of the structure
is variable, for quasiquoted form can be more concise. Gauche also tries to minimize runtime
allocation for quasiquoted forms, so it may potentially be more efficient; see "How static are
quasiquoted forms?" below.

Splicing

When (unquote-splicing expr) appears in a quasiquoted form, expr must evaluate to a list,
which is spliced into the surrounding context. It’s easier to see examples:

(let ((x > 2 3)))
‘(a ,0x b)) = (a1230D)

(let ((x (1 2 3)))
‘(a ,x b)) = (a (1 23)0b)

(let ((x ’(1 2 3)))
‘#(a ,0x b)) = #(a 1 2 3 D)

Compare the unquote version and unquote-splicing version. Splicing also works within a
vector.

Multi-argument unquotes

If unquote or unquote-splicing takes multiple arguments, they are interpreted as if each of
its arguments are unquoted or unquote-spliced.

;; This is the same result as ‘(,(+ 1 2) ,(+ 2 3) ,(+ 3 4))
‘((unquote (+ 1 2) (+ 2 3) (+ 3 4)))
= (357)

;3 This is the same result as

;5 ‘(e(list 1 2) ,0(list 2 3) ,@(list 3 4))

¢ ((unquote-splicing (list 1 2) (list 2 3) (1list 3 4)))
= (122334)

;; Edge cases
¢ ((unquote)) = 0
¢ ((unquote-splicing)) = ()
It is an error for zero or multiple argument unquote/unquote-splicing forms appear which
you cannot splice multiple forms into.
;3 Multiple arguments unquotes are error in non-splicing context
¢ (unquote 1 2) = error
¢ (unquote-splicing 1 2) = error
Note that the abbreviated notations ,x and ,@x are only for single-argument forms. You
have to write unquote or unquote-splicing explicitly for zero or multiple argument forms;
thus you don’t usually need to use them. These forms are supported mainly to make the nested
unquoting forms such as , ,@ and ,@,@8—R5RS cannot handle the case the inner unquote-splicing
form expands into zero or multiple forms.

Chapter 4: Core syntax 65

How static are quasiquoted forms?

When quasiquoted form contains variable parts, what happens at runtime is just the same as
when an explicit form is used: ‘ (,x ,y) is evaluated exactly like (1ist x y). However, Gauche
tries to minimize runtime allocation when a quasiquoted form has static parts.

First of all, if there’s no variable parts in quasiquoted form, like ¢ (a b c), the entire form is
allocated statically. If there is a static tail in the structure, it is also allocated statically; e.g.
“((,xab) (,y cd)) works like (1ist (cons x *(a b)) (consy ’(c d))).

Furthermore, when an unquoted expression is a constant expression, Gauche embeds it into
the static form. If you’'ve defined a constant like (define-constant x 3), then the form ¢ (,x
, (+ x 1)) is compiled as the constant ’ (3 4). (See Section 4.10 [Definitions|, page 65, for the
explanation of define-constant form.)

In general it is hard to say which part of quasiquoted form is compiled as a static datum
and which part is not, so you shouldn’t write a code that assumes some parts of the structure
returned from quasiquote are freshly allocated. In other words, you better avoid mutating such
structures.

4.10 Definitions

define variable expression [Special Form]
define (variable . formals) body . .. [Special Form]
define variable [Special Form]

[R7RS+] This form has different meanings in the toplevel (without no local bindings) or inside
a local scope.

On toplevel, it defines a global binding to a symbol variable. In the first form, it globally
binds a symbol variable to the value of expression, in the current module.

(define x (+ 1 2))

x = 3
(define y (lambda (a) (* a 2)))
(y 8 = 16

If variable is already bound in the same module, the subsequent definitions work just like
assignments.

(define x 3)
(define (value-of-x) x)

(value-of-x x) = 3
(define x 4)

(value-of-x x) = 4

If variable is not bound in the current module, but has an imported bindings, things get
interesting but complicated. See Section 4.10.1 [Into the Scheme-Verse], page 69, for the
details.

The second form is a syntactic sugar of defining a procedure. It is equivalent to the following
form.

(define (name . args) body ...)
= (define name (lambda args body ...))

The third form is a shorthand of (define variable (undefined)). It is introduced in R6RS
(but not a part of R7RS). You can use that form to indicate the initial value doesn’t matter.

Chapter 4: Core syntax 66

If the form appears inside a local scope (internal define), this introduce a local binding of the
variable.

Internal defines can appear in the beginning of body of 1ambda or other forms that introduces
local bindings. They are equivalent to a letrec* form, as shown below.

(lambda (a b)
(define (cube x) (* x x X))
(define (square x) (* x x))
(+ (cube a) (square b)))

(lambda (a b)
(letrec* ([cube (lambda (x) (* x x x))]
[square (lambda (x) (* x x))])
(+ (cube a) (square b))))

Since internal defines are essentially a letrec* form, you can write mutually recursive local
functions, and you can use preceding bindings introduced in the same scope to calculate the
value to be defined. However, you can’t use a binding that is introduced after an internal
define form to calculate its value; if you do so, Gauche may not report an error immediately,
but you may get strange errors later on.

(lambda (a)
(define x (* a 2))
(define y (+ x 1)) ; ok to use x to calculate y
(x a y))

(lambda (a)
;35 You can refer to even? in odd?, since the value of even?
;; isn’t used at the time odd? is defined; it is only used
;; Wwhen odd? is called.
(define (o0dd? x) (or (= x 1) (not (even? (- x 1)))))
(define (even? x) (or (= x 0) (mot (odd? (- x 1)))))
(odd? a))

(lambda (a)
;3 This is not ok, for defining y needs to use the value
;; of x. However, you may not get an error immediately.
(define y (+ x 1))
(define x (* a 2))
(x ay))

Inside the body of binding constructs, internal defines must appear before any expression of
the same level. The following code isn’t allowed, for an expression (print a) precedes the
define form.

(lambda (a)
(print a)
(define (cube x) (* x x x)) ; error!
(cube a))

It is also invalid to put no expressions but internal defines inside the body of binding con-
structs, although Gauche don’t report an error.

Chapter 4: Core syntax 67

Note that begin (see Section 4.7 [Sequencing], page 60) doesn’t introduce a new scope.
Defines in the begin act as if begin and surrounding parenthesis are not there. Thus these
two forms are equivalent.
(let ((x 0))
(begin
(define (foo y) (+ x y)))
(foo 3))

(let ((x 0))
(define (foo y) (+ x y))

(foo 3))
define-values (var ...) expr [Macro]
define-values (var varl var2) expr [Macro]
define-values var expr [Macro]

[R7TRS base] Expr is evaluated, and each value of the result is bound to each vars. In the
first form, it is an error unless expr yields the same number of values as vars.

(define-values (lo hi) (min&max 3 -1 15 2))

lo = -1

hi = 15
In the second form, expr may yield as many values as var varl ... or more; the excess values
are made into a list and bound to var2.

(define-values (a b . c) (values 1 2 3 4))

a =1
b = 2
c = (3 4)
In the last form, all the values yielded by expr are gathered to a list and bound to var.

(define-values qr (quotient&remainder 23 5))

qr = (4 3)
You can use define-values wherever define is allowed; that is, you can mix define-values
in internal defines.
(define (foo . args)
(define-values (lo hi) (apply min&max args))
(define len (length args))
(1ist len lo hi))

(foo 149307

= (6 0 9)
define-constant variable expression [Special Form]
define-constant (variable . formals) body . .. [Special Form]

This form is only effective in toplevel.

Like top-level define, it defines a top-level definition of variable with the value of expression,
but additionally tells the compiler that (1) the binding won’t change, and (2) the value of
expression won’t change from the one computed at the compile time. So the compiler can
replace references of variable with the compile-time value of expression.

An error is signaled when you use set! to change the value of variable. It is allowed to
redefine variable, but a warning is printed.

Chapter 4: Core syntax 68

The difference from define-inline below is that the value of expression is computed at the
compile time and treated as a literal. Suppose you define x as follows:

(define-constant x (vector 1 2 3))
Then, the code (1ist x) is compiled to the same code as (1ist *#(1 2 3)).
This distinction is especially important when you do AOT (ahead of time) compilation.

There’s no “internal define-constant”, since the compiler can figure out whether a local
binding is mutated, and optimize code accordingly, without a help of declarations.

define-inline variable expression [Special Form]
define-inline (variable . formals) body . .. [Special Form]
The second form is a shorthand of (define-inline variable (lambda formals body ...)).

If this appears in the position of internal defines, it is the same as internal defines.

If it appears in the toplevel, it defines an inlinable binding. An inlinable binding promises
the compiler that the binding won’t change, but unlike constant bindings introduced by
define-constant, the actual value of expression may be computed at runtime. Hence the
compiler cannot simply replace the references of variable with the compile-time value of
expression.

However, if the compiler can determine that the value of expression is to be a procedure, it
may inline the procedure where it is invoked.

In the example below, the body of dot3 is inlined where dot3 is called. Furthermore, since
the second argument of dot3 is a constant vector, you can see vector-ref on it is computed
at compile time (e.g. CONST -1.0 etc.)

gosh> (define-inline (dot3 a b)
(+ (x (vector-ref a 0) (vector-ref b 0))
(* (vector-ref a 1) (vector-ref b 1))
(* (vector-ref a 2) (vector-ref b 2))))
dot3
gosh> (disasm (~[] (dot3 x ’#(-1.0 -2.0 -3.0))))
CLOSURE #<closure (#f)>
=== main_code (name=#f, code=0x28524e0, size=26, const=4 stack=6):
signatureInfo: ((#£f))
0 GREF-PUSH #<identifier user#x.20d38e0>; x

2 LOCAL-ENV(1) ; (dot3 x (quote #(-1.0 -2.0 -3.0)))

3 LREFO ;a

4 VEC-REFI(0) ; (vector-ref a 0)

5 PUSH

6 CONST -1.0

8 NUMMUL2 ; (* (vector-ref a 0) (vector-ref b 0))
9 PUSH

10 LREFO ;a

11 VEC-REFI(1) ; (vector-ref a 1)

12 PUSH

13 CONST -2.0

15 NUMMUL2 ; (x (vector-ref a 1) (vector-ref b 1))
16 NUMADD2 ; (+ (x (vector-ref a 0) (vector-ref b 0))I
17 PUSH

18 LREFO ; a

19 VEC-REFI(2) ; (vector-ref a 2)

20 PUSH

21 CONST -3.0

Chapter 4: Core syntax 69

23 NUMMULZ2 ; (x (vector-ref a 2) (vector-ref b 2))
24 NUMADD2 ; (+ (x (vector-ref a 0) (vector-ref b 0))I
25 RET

As an extreme case, if both arguments are compile-time constant, dot3 is completely com-
puted at compile time:

gosh> (disasm ("[] (dot3 ’#(1 2 3) ’#(4 5 6))))
CLOSURE #<closure (#f)>
=== main_code (name=#f, code=0x2a2b8e0, size=2, const=0 stack=0):
signatureInfo: ((#£f))
0 CONSTI(32)
1 RET

The same inlining behavior may be achieved by making dot3 a macro, but if you use
define-inline, dot3 can be used as procedures when needed:

(map dot3 list-of-vectorsl list-of-vectors2)
If dot3 is a macro you can’t pass it as a higher-order procedure.

The inline expansion pass is run top-to-bottom. Inlinable procedure must be defined before
used in order to be inlined.

If you redefine an inlinable binding, Gauche warns you, since the redefinition won’t affect
already inlined call sites. So it should be used with care—either use it internal to the module,
or use it for procedures that won’t change in future. Inlining is effective for performance-
critical parts. If a procedure is called sparingly, there’s no point to define it inlinable.

define-in-module module variable expression [Special Form]

define-in-module module (variable . formals) body . . . [Special Form]
This form must appear in the toplevel. It creates a global binding of variable in module,
which must be either a symbol of the module name or a module object. If module is a
symbol, the named module must exist.

Expression is evaluated in the current module.
The second form is merely a syntactic sugar of:

(define-in-module module variable (lambda formals body ...))

Note: to find out if a symbol has definition (global binding) in the current module, you can
use global-variable-bound? (see Section 4.13.6 [Module introspection], page 80).

4.10.1 Into the Scheme-Verse

Multiple toplevels are multiple scopes

One upon a time, the Scheme world was simple. We had one single global space we called the
toplevel. Toplevel definitions can be understood as side-effects to this global space; if the name
hasn’t been exist there yet, create a new binding, otherwise, overwrite existing one.

The problem was that it was hard to scale, thus many implementations introduced their own
module systems. One of the main agenda of R6RS was to have a module system (which is called
“library” in RnRS) consistent with the design of Scheme. Especially, since Scheme’s hygienic
macro system captures lexical scope, it is desirable that it interacts with the module system in
the same way.

In modern Scheme, “toplevel” of each module creates its own lexical scope, and the definitions
are understood in letrec* semantics. Hence, macro systems can consistently treat identifiers
as a name associated with a scope.

Suppose you see these toplevel definitions:

(define (0dd? n) (if (zero? x) #f (even? (- n 1))))

Chapter 4: Core syntax 70

(define (even? n) (if (zero? x) #t (odd? (- n 1))))

The first appearance of even? in the first line is understood as the one defined in the second
line. It becomes apparent when we compare it with internal defines:

(let ((even? error))
(define (0dd? n) (if (zero? x) #f (even? (- n 1))))
(define (even? n) (if (zero? x) #t (odd? (- n 1))))
)
The even? in the definition of odd? refers to the one defined in the next line, never to the
one bound by let.
So far, so good.
Now, consider the following toplevel code:
;5 Invalid in RnRS, n >= 6
(import (scheme base) (scheme write))
(define orig-error error)
(define (error . args)
(write args) (newline)
(apply orig-error args))
The intention is to save the original value of error, which is imported from (scheme base),
into a variable orig-error, then redefine error to add logging feature. This technique was
popular in pre-R6RS Scheme.

However, with our new toplevel-as-a-scope Scheme, the error in (define orig-error
error) must refer to the one defined in the same scope, which is the new definition below;
otherwise lexical scoping gets broken. The value of inner error hasn’t been calculated when
orig-error’s value is calculated, so the above form is an invalid program in terms of RnRS.

In fact, to avoid confusion, R6RS prohibits defining a toplevel variable that conflicts with
the imported name (in R7RS the behavior of such program is undefined). In the example above,
the name error is imported from (scheme base) and also defined in the toplevel, hence it’s a
violation.

The modern way of such augumentation is to use renaming import:

(import (except (scheme base) error)
(rename (scheme base) (error r7rs:error))
(scheme write))
(define (error . args)
(write args) (nmewline)
(apply r7rs:error args))

Gauche’s take

Gauche’s module system predates R6RS and R7RS, and it regards a module as a first-class
entity and suppors class-like inheritance. It is upper-compatible to R7RS libraries, but we take
freedom in interpreting R7RS undefined behaviors.

First, you can define toplevel variables that conflict with imported or inherited bindings. The
new definition simply shadows the old one.

Second, if multiple toplevel forms are processed at once e.g. it is enclosed in begin or the
file is read by include, we treat them in one scope. That is, if the above orig-error example
is read by include, the first error refers to the to-be-defined error below. Since the value of
error hasn’t been calculated by the time it’s used, you’ll get the following error:

**%*x ERROR: uninitialized variable: error

Third, Gauche compiles and executes each individual toplevel forms (the forms that’s not

enclosed in other S-expressions). It is the same as REPL semantics. If each form of orig-error

Chapter 4: Core syntax 71

example appears individually on the toplevel, the (define orig-error error) line actually
refers to the R7RS error and assign it to orig-error, since we don’t know yet if error will be
defined in the same scope.

The third rule is necessary to support REPL semantics, but note that the result would differ
when the same file is included. If you can, avoid writing such ambiguous code.

Note: The second behavior is clarified in release 0.9.9 for the better compatibility with R7RS.
Before that, the behavior of such case is undefined, but some code might have expected that it
works in REPL semantics (the third rule).

In order to support the transition, if you set an enviornment variable GAUCHE_LEGACY_DEFINE,
Gauche treats definitions in the same way as 0.9.8 and before. Note that if you that, you may
see Gauche can’t include some valid R7RS code that has multiple libraries in one file.

4.11 Inclusions

include filename . .. [Special Form]
include-ci filename . .. [Special Form]
[R7TRS base] Reads filename ... at compile-time, and insert their contents as if the forms

are placed in the includer’s source file, surrounded by begin. The include form reads files
as is, while include-ci reads files in case-insensitive way, as if #!fold-case is specified in
the beginning of the file (see Section 2.4 [Case-sensitivity|, page 14).
The coding magic comment in each file is honored while reading that file (see Section 2.3
[Multibyte scripts|, page 13).
If filename is absolute, the file is just searched. If it is relative, the file is first searched relative
to the file containing the include form, then the directories in *load-path* are tried.
Example: Suppose a file a.scm contains the following code:
(define x 0)
(define y 1)
You can include this file into another source, like this:
(define (foo)
(include "a.scm")
(list x y))
It works as if the source is written as follows:
(define (foo)
(begin
(define x 0)
(define y 1))
(list x y))
(Note: In version 0.9.4, include behaved differently when pathname begins with either ./
or ../—in which case the file is searched relative to the current working directory of the
compiler. It is rather an artifact of include sharing file search routine with load. But unlike

load, which is a run-time operation, using relative path to the current directory won’t make
much sense for include, so we changed the behavior in 0.9.5.)

Gauche has other means to incorporate source code from another files. Here’s the comparison.
require (use and extend calls require internally)
e Both require and include work at compile-time.
e Require works only in toplevel context, while include can be anywhere.

e Require reads the file only once (second and later require on the same file
becomes no-op), while include reads the file every place it appears.

Chapter 4: Core syntax 72

e The file is searched from *load-path#*. The location of the file require form
appears doesn’t matter. (You can add directories relative to the requiring file
using the :relative flag in add-load-path, though).

e Even if the current module is changed by select-module inside the required file,
it is only effective while the required file is read. On the other hand, include
inserts any S-expressions in the included file to the place include appears, so
the effect of select-module persists after include form (Note: Encoding magic
comment and #!fold-case/#!no-fold-case are dealt with by the reader, so
those effect is contained in the file even with include).

e It is forbidden to the file loaded by require to insert a toplevel binding with-
out specifying a module. In other words, the file you require should generally
use define-module, select-module or define-library. See Section 6.22.3
[Require and provide], page 266, for further discussion. On the other hand,
include has no such restrictions.

load
e Works at runtime, while include works at compile-time.
e Works only in toplevel context, while include can be anywhere.

e The file is searched from *load-path*, except when the file begins with ./ or
../, in which case it is first tried relative to the current directory before being
searched from *load-pathx.

e As the case with require, change of the current module won’t persist after
load.

Usually, require (or use and extend) are better way to incorporate sources in other files.
The include form is mainly for the tricks that can’t be achieved with require. For example,
you have a third-party R5RS code and you want to wrap it with Gauche module system. Using
include, you place the following small source file along the third-party code, and you can load
the code with (use third-party-module) without changing the original code at all.

(define-module third-party-module
(export proc ...)
(include "third-party-source.scm"))

4.12 Feature conditional

The cond-expand macro

Sometimes you need to have a different piece of code depending on available features provided
by the implementation and/or platform. For example, you may want to switch behavior de-
pending on whether networking is available, or to embed an implementation specific procedures
in otherwise-portable code.

In C, you use preprocessor directives such as #ifdef. In Common Lisp, you use reader macro
#+ and #-. In Scheme, you have cond-expand:

cond-expand (feature-requirement command-or-definition . ..) ... [Macro]
[R7RS base] This macro expands to command-or-definition ... if feature-requirement is
supported by the current platform.

feature-requirement must be in the following syntax:

feature-requirement
: feature-identifier
| (and feature-requirement ...)

Chapter 4: Core syntax 73

| (or feature-requirement ...)
| (not feature-requirement)
| (library library-name)

The macro tests each feature-requirement in order, and if one is satisfied, the macro itself
expands to the corresponding command-or-definition

The last clause may have else in the position of feature-requirement, to make the clause
expanded if none of the previous feature requirement is fulfilled.

If there’s neither a satisfying clause nor else clause, cond-expand form throws an error. It
is to detect the case early that the platform doesn’t have required features. If the feature
you’re testing is optional, that is, your program works without the feature as well, add empty
else clause as follows.

(cond-expand
[feature expr] ; some optional feature
[elsel)

feature-identifier is a symbol that indicates a feature. If such a feature is supported in the
current platform, it satisfies the feature-requirement. You can do boolean combination of
feature-requirements to compose more complex conditions.

The form (library library-name) is added in R7RS, and it is fulfilled when the named
library is available. Since this is R7RS construct, you have to use R7RS-style library name—
list of symbols/integers, e.g. (gauche net) instead of gauche.net.

Here’s a typical example: Suppose you want to have implementation-specific part for Gauche,
Chicken Scheme and ChibiScheme. Most modern Scheme implementations defines a feature-
identifier to identify itself. You can write the conditional part as follows:

(cond-expand

[gauche (gauche-specific-code)]

[(or chicken chibi) (chicken-chibi-specific-code)]
[else (fallback-code)]

)

It is important that the conditions of cond-expand is purely examined at the macro-expansion
time, and unfulfilled clauses are discarded. Thus, for example, you can include macro calls
or language extensions that may not be recognized on some implementations. You can also
conditionally define global bindings.

Compare that to cond, which examines conditions at runtime. If you include unsupported
macro call in one of the conditions, it may raise an error at macro expansion time, even if
that clause will never be executed on the platform. Also, it is not possible to conditionally
define global bindings using cond.

There’s a caveat, though. Suppose you want to save the result of macro expansion, and run
the expanded result later on other platforms. The result code is based on the features of
the platform the macro expansion takes place, which may not agree with the features of the
platform the code will run. (This issue always arises in cross-compiling situation in general.)

See below for the list of feature identifiers defined in Gauche.

Gauche-specific feature identifiers

gauche

gauche-X.X.X
Indicates you’re running on Gauche. It is useful to put Gauche-specific code in a
portable program. X.X.X is the gauche’s version (e.g. gauche-0.9.4), in case you
want to have code for specific Gauche version. (Such feature identifier is suggested

Chapter 4: Core syntax 74

gauche.
gauche.

gauche.
gauche.
gauche.
gauche.

gauche.
gauche.
gauche.

gauche

gauche.
gauche.
gauche.

gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.
gauche.

by R7RS; but it might not be useful if we don’t have means to compare versions.
Something to consider in future versions.)

os.windows

os.cygwin
Defined on Windows-native platform and Cygwin/Windows platform, respectively.
If neither is defined you can assume it’s a unix variant. (Cygwin is supposedly unix
variant, but corners are different enough to deserve it’s own feature identifier.)

ces.utf8

ces.eucjp

ces.sjis

ces.none
Either one of these is defined based on Gauche’s native character encoding scheme.
See Section 2.2 [Multibyte strings|, page 12, for the details.

net.tls

net.tls.axtls

net.tls.mbedtls
Defined if the runtime supports TLS in networking. The two sub feature iden-
tifiers, gauche.net.tls.axtls and gauche.net.tls.mbedtls, are defined if each
subsystem axTLS and mbedTLS is supported, respectively.

.net.ipv6

Defined if the runtime supports IPv6. Note that this only indicates Gauche has
been built with IPv6 support; the OS may not allow IPv6 features, in that case
you’ll get system error when you try to use IPv6.

sys.threads

sys.pthreads

sys.wthreads
If the runtime supports multithreading, gauche.sys.threads is defined (see
Section 9.34 [Threads|, page 495). Multithreading is based on either POSIX
pthreads or Windows threads. The former defines gauche.sys.pthreads, and the
latter defines gauche.sys.wthreads

sys.sigwait
sys.setenv
sys.unsetenv
sys.clearenv
sys.getloadavg
sys.getrlimit
sys.lchown
sys.getpgid
sys.nanosleep
sys.crypt
sys.symlink
sys.readlink
sys.select
sys.fcntl
sys.syslog
sys.setlogmask
sys.openpty
sys.forkpty
Those are defined based on the availability of these system features of the platform.

Chapter 4: Core syntax 75

R7RS feature identifiers

r7rs Indicates the implementation complies r7rs.

exact-closed
Exact arithmetic operations are closed; that is, dividing an exact number by a
non-zero exact number always yields an exact number.

ieee-float
Using IEEE floating-point number internally.

full-unicode
Full unicode support.

ratios Rational number support
posix
windows Either one is defined, according to the platform.
big-endian
little-endian
Either one is defined, according to the platform.

4.13 Modules

This section describes the semantics of Gauche modules and its API. See also Section 3.7 [Writing
Gauche modules|, page 36, for the conventions Gauche is using for its modules.

For R7RS programs, they are called “libraries” and have different syntax than Gauche mod-
ules. See Section 10.2.1 [R7RS library form], page 546, for the details.

4.13.1 Module semantics

Module is an object that maps symbols onto bindings, and affects the resolution of global variable
reference.

Unlike CommonLisp’s packages, which map names to symbols, in Gauche symbols are eq?
in principle if two have the same name (except uninterned symbols; see Section 6.7 [Symbols],
page 149). However, Gauche’s symbol doesn’t have a ’value’ slot in it. From a given symbol, a
module finds its binding that keeps a value. Different modules can associate different bindings
to the same symbol, that yield different values.

;3 Makes two modules A and B, and defines a global variable ’x’ in them

(define-module A (define x 3))
(define-module B (define x 4))

;3 #<symbol ’x’> ---[module A]--> #<binding that has 3>
(with-module A x) = 3

;5 #<symbol ’x’> ---[module B]--> #<binding that has 4>
(with-module B x) = 4
A module can export a part or all of its bindings for other module to use. A module can
import other modules, and their exported bindings become visible to the module. A module
can import any number of modules.
(define-module A
(export pi)
(define pi 3.1416))

(define-module B

Chapter 4: Core syntax 76

(export e)
(define e 2.71828))

(define-module C
(import A B))

(select-module C)
(x pi e) = 8.539748448

A module can also be inherited, that is, you can extend the existing module by inheriting it
and adding new bindings and exports. From the new module, all ancestor’s bindings (including
non-exported bindings) are visible. (A new module inherits the gauche module by default, which
is why the built-in procedures and syntax of gauche are available in the new module). From
outside, the new module looks like having all exported bindings of the original module plus the
newly defined and exported bindings.

;3 Module A defines and exports deg->rad.
;; A binding of pi is not exported.
(define-module A
(export deg->rad)
(define pi 3.1416) ;; not exported
(define (deg->rad deg) (* deg (/ pi 180))))

;3 Module Aprime defines and exports rad->deg.
;; The binding of pi is visible from inside Aprime.
(define-module Aprime

(extend A)

(export rad->deg)

(define (rad->deg rad) (x rad (/ 180 pi))))

;3 Module C imports Aprime.
(define-module C
(import Aprime)
;; Here, both deg->rad and rad->deg are visible,
;3 but pi is not visible.
)

At any moment of the compilation, there is one "current module" available, and the global
variable reference is looked for from the module. If there is a visible binding of the variable, the
variable reference is compiled to the access of the binding. If the compiler can’t find a visible
binding, it marks the variable reference with the current module, and delays the resolution of
binding at the time the variable is actually used. That is, when the variable is referenced at
run time, the binding is again looked for from the marked module (not the current module at
the run time) and if found, the variable reference code is replaced for the the code to access the
binding. If the variable reference is not found even at run time, an 'undefined variable’ error is
signaled.

Once the appropriate binding is found for the global variable, the access to the binding is
hard-wired in the compiled code and the global variable resolution will never take place again.

The definition special form such as define and define-syntax inserts the binding to the
current module. Thus it may shadow the binding of imported or inherited modules.

The resolution of binding of a global variable happens like this. First, the current module is
searched. Then, each imported module is taken in the reverse order of import, and searched,
including each module’s ancestors. Note that import is not transitive; imported module list is
not chased recursively. Finally, ancestors of the current module are searched in order.

Chapter 4: Core syntax 7

This order is important when more than one modules defines the same name and your module
imports both. Assuming your module don’t define that name, if you first import a module A
then a module B, you'll see B’s binding.

If you import A, then B, then A again, the last import takes precedence; that is, you’ll see A’s
binding.

If two modules you want to use exports bindings of the same name and you want to access
both, you can add prefix to either one (or both). See Section 4.13.4 [Using modules], page 78,
for the details.

4.13.2 Modules and libraries

Modules are run-time data structure; you can procedurally create modules with arbitrary names
at run-time.

However, most libraries use modules to create their own namespace, so that they can control
which bindings to be visible from library users. (This “library” is a general term, broader than
R7RS “library”).

Usually a library is provided in the form of one or more Scheme source file(s), so it is
convenient to have a convention to map module names to file names, and vice versa; then, you
can load a library file and import its module by one action with use macro, for example.

For the time being, Gauche uses a simple rules for this mapping: Module names are organized
hierarchically, using period ‘.’ for separator, e.g. gauche.mop.validator. If such a module is
requested and doesn’t exist in the current running environment, Gauche maps the module name
to a pathname by replacing periods to directory separator, i.e. gauche/mop/validator, and
look for gauche/mop/validator.scm in the load paths.

Note that this is just a default behavior. Theoretically, one Scheme source file may contain
multiple modules, or one module implementation may span to multiple files. In future, there
may be some hook to customize this mapping for special cases. So, when you are writing routines
that deal with modules and library files, do not apply the above default rule blindly. Gauche
provides two procedures, module-name->path and path->module-name, to do mapping for you
(see Section 4.13.6 [Module introspection], page 80, for details).

4.13.3 Defining and selecting modules

define-module name body ... [Special Form]
Name must be a symbol. If a module named name does not exist, create one. Then evaluates
body sequentially in the module.

select-module name [Special Form]
Makes a module named name as the current module. It is an error if no module named name
exists.

If select-module is used in the Scheme file, its effect is limited inside the file, i.e. even if
you load /require a file that uses select-module internally, the current module of requirer is
not affected.

with-module name body . .. [Special Form]
Evaluates body sequentially in the module named name. Returns the last result(s). If no
module named name, an error is signaled.

current-module [Special Form]
Evaluates to the current module in the compile context. Note that this is a special form, not
a function. Module in Gauche is statically determined at compile time.

(define-module foo

Chapter 4: Core syntax 78

(export get-current-module)
(define (get-current-module) (module-name (current-module))))

(define-module bar
(import foo)
(get-current-module)) = foo ; not bar

4.13.4 Using modules

export spec ... [Special Form]
[R7RS base] Makes bindings specified by each spec available to modules that imports the
current module.

Each spec can be either one of the following forms, where name and exported-name are
symbols.

name The binding with name is exported.

(rename name exported-name)
The binding with name is exported under an alias exported-name.

Note: In Gauche, export is just a special form you can put in the middle of the program,
whereas R7RS defines export as a library declaration, that can only appear immediately
below define-library form. See Section 10.2.1 [R7RS library form], page 546, for the
details.

export-all [Special Form]
Makes all bindings in the current module available to modules that imports it.

import import-spec . .. [Special Form]
Makes all or some exported bindings in the module specified by import-spec available in the
current module. The syntax of import-spec is as follows.

<import-spec> : <module-name>

| (<module-name> <import-option> ...)
<import-option> : :only (<symbol> ...)
| :except (<symbol> ...)
| :rename ((<symbol> <symbol>) ...)

| :prefix <symbol>

<module-name> : <symbol>
The module named by module-name should exist when the compiler sees this special form.

Imports are not transitive. The modules that module-names are importing are not automat-
ically imported to the current module. This keeps modules’” modularity; a library module
can import whatever modules it needs without worrying about polluting the namespace of
the user of the module.

import-option can be used to change how the bindings are imported. With :only, only the
bindings with the names listed in <symbol> ... are imported. With :except, the exported
bindings except the ones with the listed names are imported. With :rename, the binding of
each name in the first of two-symbol list is renamed to the second of it. With :prefix, the
exported bindings are visible with the names that are prefixed by the symbol to the original
names. Without import options, all the exported bindings are imported without a prefix.

(define-module M (export x y)
(define x 1)

Chapter 4: Core syntax 79

(define y 2)
(define z 3))

(import M)

x = 1
z = error. z is not exported from M

(import (M :omnly (y)))

X = error. x is not in :only list.
(import (M :except (y)))

y = error. y is excluded by :except.
(import (M :prefix M:))

X = error

M:x = 1

My = 2
If more than one import option are given, it is processed as the order of appearance. That
is, if :prefix comes first, then :only or :except has to list the name with prefix.
Note: R7RS has import form, which has slightly different syntax and semantics. See
Section 10.1.2 [Three forms of import], page 544, for the details.

use name :key only except rename prefix [Macro]
A convenience macro that combines module imports and on-demand file loading. Basically,
(use foo) is equivalent to the following two forms:
(require "foo")
(import foo)
That is, it loads the library file named “foo” (if not yet loaded) which defines a module
named foo in it, and then import the module foo into the current module.

The keyword argument only, except, and prefix are passed to import as the import options.

(use srfi-1 :only (iota) :prefix srfi-1:)

(srfi-1:iota 3) = (0 1 2)
Although the files and modules are orthogonal concept, it is practically convenient to separate
files by modules. Gauche doesn’t force you to do so, and you can always use require and
import separately. However, all modules provided with Gauche are arranged so that they
can be used by use macro.
If a module is too big to fit in one file, you can split them into several subfiles and one main
file. The main file defines the module, and either loads, requires, or autoloads subfiles.
Actually, the file pathname of the given module name is obtained by the procedure
module-name->path below. The default rule is to replace periods ‘.’ in the name for ‘/’; for
example, (use foo.bar.baz) is expanded to:

(require "foo/bar/baz")

(import foo.bar.baz)
This is not very Scheme-ish way, but nevertheless convenient. In future, there may be some
mechanism to customize this mapping.

Chapter 4: Core syntax 80

The file to be use’d must have explicit module selection to have any toplevel definitions (usu-
ally via define-module/select-module pair or define-library). If you get an error saying
“Attempted to create a binding in a sealed module: module: #<module gauche.require-
base>”, that’s because the file lacks module selection. See Section 6.22.3 [Require and pro-
vide], page 266, for further discussion.

4.13.5 Module inheritance

The export-import mechanism doesn’t work well in some cases, such as:

e You want to create a module that is mostly the same as the existing one, but adding or
altering some definitions.

e You wrote a bunch of related modules that are often used together, and not want your users
to repeat a bunch of 'use’ forms every time they use your module.

You can use module inheritance in these cases.

extend module-name . .. [Macro]
Makes the current module inherit from named modules. The current inheritance information
is altered by the inheritance information calculated from given modules.

A new module inherits from gauche module when created. If you put (extend scheme) in
that module, for example, the module resets to inherit directly from scheme module that has
only bindings defined in R5RS, hence, after the export form, you can’t use 'import’ or any
other gauche-specific bindings in the module.

If a named module is not defined yet, extend tries to load it, using the same convention use
macro does.

A module can inherit multiple modules, exactly the same way as a class can inherit from
multiple classes. The resolution of order of inheritance needs to be explained a bit.

Each module has a module precedence list, which lists modules in the order of how they are
searched. When the module inherits multiple modules, module precedence lists of inherited
modules are merged into a single list, keeping the constraints that: (1) if a module A appears
before module B in some module precedence list, A has to appear before B in the resulting
module precedence list; and (2) if a module A appears before module B in extend form, A
has to appear before B in the resulting module precedence list. If no precedence list can be
constructed with these constraints, an error is signaled.

For example, suppose you wrote a library in modules mylib.base, mylib.util and
mylib.system. You can bundle those modules into one module by creating a module mylib, as
follows:

(define-module mylib
(extend mylib.system mylib.util mylib.base))

The user of your module just says (use mylib) and all exported symbols from three sub-
modules become available.

4.13.6 Module introspection

This subsection lists procedures that operates on modules at run-time. With these proce-
dures you can introspect the modules, create new modules procedurally, or check the existence
of certain modules/libraries, for example. However, don’t forget that modules are primarily
compile-time structures. Tweaking modules at run-time is only for those who know what they
are doing.

<module> [Builtin Class]
A module class.

Chapter 4: Core syntax 81

module? obj [Function]
Returns true if obj is a module.

find-module name [Function]
Returns a module object whose name is a symbol name. If the named module doesn’t exist,
#f is returned.

make-module name :key if-exists [Function]
Creates and returns a module that has symbol name. If the named module already exists,
the behavior is specified by if-exists keyword argument. If it is :error (default), an error is
signaled. If it is #£f, #f is returned.

Note that creating modules on-the-fly isn’t usually necessary for ordinal scripts, since to
execute already written program requires modules to be specified by name, i.e. syntax
define-module, import, extend, with-module all take module names, not module objects.
It is because module are inherently compile-time structures. However, there are some cases
that dynamically created modules are useful, especially the program itself is dynamically
created. You can pass a module to eval to compile and evaluate such dynamically created
programs in it (see Section 6.20 [Eval and repl], page 239).

You can also pass #f to name to create anonymous module. Anonymous modules can’t be
looked up by find-module, nor can be imported or inherited (since import and extend take
module names, not modules). It is useful when you want to have a temporary, segregated
namespace dynamically—for example, you can create an anonymous module to evaluate
code fragments sent from other program, and discards the module when the connection is
terminated. Anonymous modules are not registered in the system dictionary and are garbage
collected when nobody keeps reference to it.

R7RS provides another way to create a transient module with environment procedure. see
Section 10.2.7 [R7RS eval|, page 550, for the details.

all-modules [Function]
Returns a list of all named modules. Anonymous modules are not included.

module-name module [Function]

module-imports module [Function]

module-exports module [Function]

module-table module [Function]
Accessors of a module object. Returns the name of the module (a symbol), list of imported
modules, list of exported symbols, and a hash table that maps symbols to bindings, of the
module are returned, respectively.

It is an error to pass a non-module object.

module-parents module [Function]

module-precedence-list module [Function]
Returns the information of module inheritance. Module-parents returns the modules mod-
ule directly inherits from. Module-precedence-list returns the module precedence list of
module (see Section 4.13.5 [Module inheritance|, page 80).

global-variable-bound? module symbol [Function]
Returns true if symbol’s global binding is visible from module. Module must be a module
object or a symbol name of an existing module.

Note: there used to be the symbol-bound? procedure to check whether a global variable is
bound. It is deprecated and the new code should use global-variable-bound? instead. The
reason of change is that because of the name symbol-bound? and the fact that it assumes
current-module by default, it gives an illusion as if a global bound value is somewhat ’stored’

Chapter 4: Core syntax 82

in a symbol itself (like CommonLisp’s model). It caused a lot of confusion when the current
module differs between compile-time and runtime. The new name and API made it clear
that you are querying module’s property.

global-variable-ref module symbol :optional default [Function]
Returns a value globally bound to the symbol visible from module. Module must be a
module object or a symbol name of an existing module. If there’s no visible global binding
from module for symbol, an error is signaled, unless the default argument is provided, in
which case it is returned instead.

module-name->path symbol [Function]
Converts a module name symbol to a fragment of pathname string (which you use for require
and provide).

path->module-name string [Function)]
Reverse function of module-name->path.

If you want to find out specific libraries and/or modules are installed in the system and
available from the program, see Section 6.22.5 [Operations on libraries], page 268.

4.13.7 Predefined modules

Several modules are predefined in Gauche.

null [Builtin Module]
This module corresponds to the null environment referred in R5RS. This module contains
only syntactic bindings of R5RS syntax.

scheme [Builtin Module]
This module contains all the binding of null module, and the binding of procedures defined
in R5RS.

Note that if you change the current module to null or scheme by select-module, there will
be no way to switch back to other modules, since module-related syntaxes and procedures are
not visible from null and scheme modules.

gauche [Builtin Module]
This module contains all the bindings of scheme module, plus Gauche specific built-in pro-
cedures.

user [Builtin Module]
This module is the default module the user code is compiled. all the bindings of gauche
module is imported.

gauche.keyword [Builtin Module]

keyword [Builtin Module]
When Gauche is running with GAUCHE_KEYWORD_IS_SYMBOL mode (default) keywords (sym-
bols beginning with :) is automatically bound to itself in these modules. (see Section 6.8
[Keywords|, page 150, for the details.)

The keyword module doesn’t export those bindings, while gauche . keyword does. The former
is intended to be used internally; the programmer need to know the latter.

If you use the default module inheritance, you don’t need to use this module, since the
keyword module is included in the inheritance chain. If you don’t inherit gauche module,
however, importing the gauche.keyword module gives you access to the keywords without
quotes. For example, R7TRS programs and libraries would require either (import (gauche

83

keyword)) or (import (gauche base)) (the latter inherits gauche.keyword), or you have
to quote all keywords.

The following R7RS program imports gauche.base; it makes gauche built-in identifiers, and
all self-bound keywords, available:
;3 R7TRS program
(import (scheme base)
(gauche base)) ; import gauche builtins and keywords

;5 You can use :directory without quote, for it is bound to itself.
(sys—exec "1s" ’("1s" "-1") :directory "/")

If you use more sophisticated import tricks, however, keep in mind that keywords are just im-
ported symbols by default. The following code imports Gauche builtin identifiers with prefix
gauche/. That causes keywords, imported via inheritance, also get the same prefix; if you
don’t want to bother adding prefix to all keywords or quote them, import gauche.keyword
separately.
;3 R7TRS program
(import (scheme base)
(prefix (gauche base) gauche/) ; use gauche builtin with gauche/ prefix]]
(gauche keyword)) ; imports keywords

;5 Without importing gauche.keyword,
;3 you need to write ’:directory
(gauche/sys-exec "1ls" ’("1ls" "-1") :directory "/")

84

5 Macros

Macro of Lisp-family language is very different feature from ones of other languages, such as C
preprocessor macros. It allows you to extend the original language syntax. You can use macros
to change Gauche syntax so that you can run a Scheme program written to other Scheme
implementations, and you can even design your own mini-language to solve your problem easily.

Gauche supports hygienic macros, which allows to write safe macros by avoiding name col-
lisions. If you know traditional Lisp macros but new to hygienic macros, they might seem
confusing at first. We have an introductory section (Section 5.1 [Why hygienic?], page 84) for
those who are not familiar with hygienic macros; if you know what they are, you can skip the
section.

5.1 Why hygienic?

Lisp macro is a programmatic transformation of source code. A macro transformer is a procedure
that takes a subtree of source code, and returns a reconstructed tree of source code.

The traditional Lisp macros take the input source code as an S-expression, and returns the
output as another S-expression. Gauche supports that type of macro, too, with define-macro
form. Here’s the simple definition of when with the traditional macro.

(define-macro (when test . body)
“(if ,test (begin ,@body)))

For example, if the macro is used as (when (zero? x) (print "zero") ’zero), the above
macro transformer rewrites it to (if (zero? x) (begin (print "zero") ’zero)). So far, so
good.

But what if the when macro is used in an environment where the names begin or if is bound
to nonstandard values?

(let ([begin list])
(when (zero? x) (print "zero") ’zero))

The expanded result would be as follows:

(let ([begin list])
(if (zero? x) (begin (print "zero") ’zero)))

This obviously won’t work as the macro writer intended, since begin in the expanded code
refers to the locally bound name.

This is a form of variable capture. Note that, when Lisp people talk about variable capture
of macros, it often means another form of capture, where the temporary variables inserted by a
macro would unintentionally capture the variables passed to the macro. That kind of variable
capture can be avoided easily by naming the temporary variables something that never conflict,
using gensym.

On the other hand, the kind of variable capture in the above example can’t be avoided by
gensym, because (let ([begin list]) ...) partisn’t under macro writer’s control. As a macro
writer, you can do nothing to prevent the conflict, just hoping the macro user won’t do such
a thing. Sure, rebinding begin is a crazy idea that nobody perhaps wants to do, but it can
happen on any global variable, even the ones you define for your library.

Various Lisp dialects have tried to address this issue in different ways. Common Lisp some-
what relies on the common sense of the programmer—you can use separate packages to reduce
the chance of accidental conflict but can’t prevent the user from binding the name in the same
package. (The Common Lisp spec says it is undefined if you locally rebind names of CL standard
symbols; but it doesn’t prevent you from locally rebinding symbols that are provided by user
libraries.)

Chapter 5: Macros 85

Clojure introduced a way to directly refer to the toplevel variables by a namespace prefix, so
it can bypass whatever local bindings of the same name (also, it has a sophisticated quasiquote
form that automatically renames free variables to refer to the toplevel ones). It works, as far
as there are no local macros. With local macros, you need a way to distinguish different local
bindings of the same name, as we see in the later examples. Clojure’s way can only distinguish
between local and toplevel bindings. It’s ok for Clojure which doesn’t have local macros, but
in Scheme, we prefer uniform and orthogonal axioms—if functions can be defined locally with
lexical scope, why not macros?

Let’s look at the local macro with lexical scope. For the sake of explanation, suppose we have
hypothetical local macro binding form, let-macro, that binds a local identifiers to a macro trans-
former. (We don’t actually have let-macro; what we have is let-syntax and letrec-syntax,
which have slightly different way to call macro transformers. But here let-macro may be easier
to understand as it is similar to define-macro.)

(et ([f ("x (*x x x))])
(let-macro ([m (" [exprl expr2] ‘(+ (f ,exprl) (f ,expr2)))])
(let ([f CCx (+ x x))D)
(m 3 4)))) ; [1]

The local identifier m is bound to a macro transformer that takes two expressions, and returns
an S-expression. So, the (m 3 4) form [1] would be expanded into (+ (£ 3) (f 4)). Let’s rewrite
the above expression with the expanded form. (After expansion, we no longer need let-macro
form, so we don’t include it.)

(let ([f Cx (x x x)DD)
(let ([f CCx (+ x x))])
(+ (£ 3) (£ 4)))) ; [2]

Now, the question. Which binding f in the expanded form [2] should refer? If we literally
interpret the expansion, it would refer to the inner binding (“x (+ x x)). However, following
the Scheme’s scoping principle, the outer code should be fully understood regardless of inner
code:

(let ([f Cx (x x x))1)
(let-macro ([m (" [exprl expr2] ‘(+ (f ,exprl) (f ,expr2)))])
;3 The code here isn’t expected to accidentally alter
;; the behavior defined outside.

)

The macro writer may not know the inner let shadows the binding of £ (the inner forms may
be included, or may be changed by other person who didn’t fully realize the macro expansion
needs to refer outer f).

To ensure the local macro to work regardless of what’s placed inside let-macro, we need a
sure way to refer the outer f in the result of macro expansion. The basic idea is to “mark” the
names inserted by the macro transformer m—which are £ and +—so that we can distinguish two
f’s.

For example, if we would rewrite the entire form and renames corresponding local identifiers
as follows:

(et ([f_1 Cx (x x x))1)
(let-macro ([m (" [exprl expr2] ‘(+ (f_1 ,exprl) (f_1 ,expr2)))])
(et ([f_2 ("x (+ x x))1)
(m 3 4))))

Then the naive expansion would correctly preserve scopes; that is, expansion of m refers £_1,
which wouldn’t conflict with inner name f_2:

(et ([f_1 CCx (x x x))1)

Chapter 5: Macros 86

(let ([f_2 C"x (+ x x))1)
(+ (£f_1 3) (£_1 4)))

(You may notice that this is similar to lambda calculus treating lexical bindings with higher
order functions.)

The above example deal with avoiding f referred from the macro definition (which is, in fact,
f_1) from being shadowed by the binding of f at the macro use (which is £_2).

Another type of variable capture (the one most often talked about, and can be avoided by
gensym) is that a variable in macro use site is shadowed by the binding introduced by a macro
definition. We can apply the same renaming strategy to avoid that type of capture, too. Let’s
see the following example:

(let ([f ("x (*x x x))1)
(let-macro ([m ("[expril] ‘(let ([f (x (+ x x))]1) (£ ,expr1)))])
(m (£ 3))))

The local macro inserts binding of £ into the expansion. The macro use (m (£ 3)) also
contains a reference to £, which should be the outer f, since the macro use is lexically outside
of the let inserted by the macro.

We could rename f’s according to its lexical scope:

(et ([f_1 Cx (x x x))1)
(let-macro ([m (" [exprl] ‘(let ([f_2 ("x (+ x x))]) (£_2 ,expr1)))])
(m (£_1 3))))

Then expansion unambiguously distinguish two f’s.

(Qet ([f_1 Cx (x x X))
(let ([f_2 (Cx (+ x X))
(f_2 (£_1 3)))

This is, in principle, what hygienic macro is about (well, almost). In reality, we don’t rename
everything in batch. One caveat is in the latter example—we statically renamed f to £_2, but
it is possible that the macro recursively calls itself, and we have to distinguish f’s introduced in
every individual expansion of m. So macro expansion and renaming should work together.

There are multiple strategies to implement it, and the Scheme standard doesn’t want to bind
implementations to single specific strategy. The standard only states the properties the macro
system should satisfy, in two concise sentences:

If a macro transformer inserts a binding for an identifier (variable or keyword), the
identifier will in effect be renamed throughout its scope to avoid conflicts with other
identifiers.

If a macro transformer inserts a free reference to an identifier, the reference refers
to the binding that was visible where the transformer was specified, regardless of
any local bindings that surround the use of the macro.

Just from reading this, it may not be obvious how to realize those properties, and the existing
hygienic macro mechanisms (e.g. syntax-rules) hide the “how” part. That’s probably one of
the reason some people feel hygienic macros are difficult to grasp. It’s like continuations—its
description is concise but at first you have no idea how it works; then, through experience, you
become familiarized yourself to it, and then you reread the original description and understand
it says exactly what it is.

This introduction may not answer how the hygienic macro realizes those properties, but I hope
it showed what it does and why it is needed. In the following chapters we introduce a couple
of hygienic macro mechanisms Gauche supports, with examples, so that you can familiarize
yourself to the concept.

Chapter 5: Macros 87

5.2 Hygienic macros

Macro bindings

The following forms establish bindings of name and a macro transformer created by transformer-
spec. The binding introduced by these forms shadows a binding of name established in outer
scope, if there’s any.

For toplevel bindings, it will shadow bindings of name imported or inherited from other
modules (see Section 4.13 [Modules], page 75). (Note: This toplevel shadowing behavior is
Gauche’s extension; in R7RS, you shouldn’t redefine imported bindings, so the portable code
should avoid it.)

The effect is undefined if you bind the same name more than once in the same scope.

The transformer-spec can be either one of syntax-rules form, er-macro-transformer form,
or another macro keyword or syntactic keyword. We’ll explain them later.

define-syntax name transformer-spec [Special Form]
[R7RS base| If this form appears in toplevel, it binds toplevel name to a macro transformer
defined by transformer-spec.

If this form appears in the declaration part of body of lambda (internal define-syntax), let
and other similar forms, it binds name locally within that body. Internal define-syntaxes
are converted to letrec-syntax, just like internal defines are converted to letrecx.

let-syntax ((name transformer-spec) ...) body [Special Form]|

letrec-syntax ((name transformer-spec) ...) body [Special Form]
[R7RS base| Defines local macros. Each name is bound to a macro transformer as specified by
the corresponding transformer-spec, then body is expanded. With let-syntax, transformer-
spec is evaluated with the scope surrounding let-syntax, while with letrec-syntax the
bindings of names are included in the scope where transformer-spec is evaluated. Thus
letrec-syntax allows mutually recursive macros.

Transformer specs

The transformer-spec is a special expression that evaluates to a macro transformer. It is evalu-
ated in a different phase than the other expressions, since macro transformers must be executed
during compiling. So there are some restrictions.

At this moment, only one of the following expressions are allowed:

1. A syntax-rules form. This is called “high-level” macro, for it uses pattern matching
entirely, which is basically a different declarative language from Scheme, thus putting the
complication of the phasing and hygiene issues completely under the hood. Some kind
of macros are easier to write in syntax-rules. See Section 5.2.1 [Syntax-rules macro
transformer|, page 88, for further description.

2. An er-macro-transformer form. This employs ezplicit-renaming (ER) macro, where you
can use arbitrary Scheme code to transform the program, with required renaming to keep
hygienity. The legacy Lisp macro can also be written with ER macro if you don’t use
renaming. See Section 5.2.2 [Explicit-renaming macro transformer], page 90, for the details.

3. Macro or syntax keyword. This is Gauche’s extension, and can be used to define alias of
existing macro or syntax keyword.

(define-syntax si if)
(define écrivez write)

(si (< 2 3) (écrivez "oui"))

Chapter 5: Macros 88

5.2.1 Syntax-rules macro transformer

syntax-rules (literal ...) clause clause2 . .. [Special Form]
syntax-rules ellipsis (literal . . .) clause clause2 . .. [Special Form]
[R7RS base| This form creates a macro transformer by pattern matching.

Each clause has the following form:
(pattern template)

A pattern denotes a pattern to be matched to the macro call. It is an S-expression that
matches if the macro call has the same structure, except that symbols in pattern can match
a whole subtree of the input; the matched symbol is called a pattern wvariable, and can be
referenced in the template.

For example, if a pattern is (_ "foo" (a b)), it can match the macro call (x "foo" (1 2)),
or (x "foo" (1 (2 3))), but does not match (x "bar" (1 2)), (x "foo" (1)) or (x "foo"
(1 2) 3). You can also match repeating structure or literal symbols; we’ll discuss it fully
later.

Clauses are examined in order to see if the macro call form matches its pattern. If matching
pattern is found, the corresponding template replaces the macro call form. A pattern variable
in the template is replaced with the subtree of input that is bound to the pattern variable.

Here’s a definition of when macro in Section 5.1 [Why hygienic?], page 84, using
syntax-rules:

(define-syntax when
(syntax-rules ()
[(_ test body ...) (if test (begin body ...))]1))

The pattern is (_ test body ...), and the template is (if test (begin body ...)). The
ellipsis ... is a symbol; we’re not omitting code here. It denotes that the previous pattern
(body) may repeat zero or more times.

So, if the when macro is called as (when (zero? x) (print "huh?") (print "we got
zero!")), the macro expander first check if the input matches the pattern.

e The test in pattern matches the input (zero? x).

e The body in pattern matches the input (print "huh?") and (print "we got zero!").

The matching of body is a bit tricky; as a pattern variable, you may think that body works
like an array variable, each element holds each match—and you can use them in similarly
repeating substructures in template. Let’s see the template, now that the input fully matched
the pattern.

e In the template, if and begin are not pattern variable, since they are not appeared
in the pattern. So they are inserted as identifiers—that is, hygienic symbols effectively
renamed to make sure to refer to the global if and begin, and will be unaffected by the
macro use environment.

e The test in the template is a pattern variable, so it is replaced for the matched value,
(zero? x).

e The body is also a pattern variable. The important point is that it is also followed by
ellipsis. So we repeat body as many times as the number of matched values. The first
value, (print "huh?"), and the second value, (print "we got zero!"), are expanded
here.

e Hence, we get (if (zero? x) (begin (print "huh?") (print "we got zero!"))) as

the result of expansion. (With the note that if and begin refers to the identifiers
visible from the macro definition environment.)

Chapter 5: Macros 89

The expansion of ellipses is quite powerful. In the template, the ellipses don’t need to follow
the sequence-valued pattern variable immediately; the variable can be in a substructure, as
long as the substructure itself is followed by an ellipsis. See the following example:

(define-syntax show
(syntax-rules ()

[(_ expr ...)

(begin
(begin (write ’expr) (display "=") (write expr) (newline))
D)

If you call this macro as follows:
(show (+ 1 2) (/ 3 4))
It is expanded to the following form, modulo hygienity:
(begin
(begin (write ’(+ 1 2)) (display "=") (write (+ 1 2)) (newline))
(begin (write ’(/ 3 4)) (display "=") (write (/ 3 4)) (newline)))

So you’ll get this output.

(+ 1 2)=3
(/ 3 4)=3/4

You can also match with a repetition of substructures in the pattern. The following example
is a simplified 1let that expands to lambda:

(define-syntax my-let
(syntax-rules ()
[(_ ((var init) ...) body ...)
((lambda (var ...) body ...) init ...)]1))

If you call it as (my-let ((a exprl) (b expr2)) foo), then var is matched to a and b,
while init is matched to exprl and expr2, respectively. They can be used separately in the
template.

Suppose “level” of a pattern variable means the number of nested ellipses that designate
repetition of the pattern variable. A subtemplate can be followed as many ellipses as the
maximum level of pattern variables in the subtemplate. In the following example, the level
of pattern variable a is 1 (it is repeated by the last ellipsis in the pattern), while the level of
b is 2 (repeated by the last two ellipses), and the level of c is 3 (repeated by all the ellipses).

(define-syntax ellipsis-test
(syntax-rules ()
[(C(a(c...) ...0 ...
((a ...)
((ab) ...) ...
(((@bce) ...) ...) ...

In this case, the subtemplate a must be repeated by one level of ellipsis, (a b) must be
repeated by two, and (a b ¢) must be repeated by three.

(ellipsis-test (1 (2 3 4) (56 6)) (7 (8 9 10 11)))
= (1 7)
(((12) (15) (7 8))N
((((123) (124)) (156))) (((789) (78 10) (78 11)))))

In the template, more than one ellipsis directly follow a subtemplate, splicing the leaves into
the surrounding list:
(define-syntax my-append
(syntax-rules ()

Chapter 5: Macros 90

[(_ (a...) ...)
a1

(my-append (1 2 3) (4) (5 6))
= (12345 6)

(define-syntax my-append?2
(syntax-rules ()
[(C (a...) ...) ...
A N D

(my-append2 ((1 2) (3 4)) ((5) (6 7 8)))
= (1234567 8)

Note: Allowing multiple ellipses to directly follow a subtemplate, and a pattern variable in
a subtemplate to be enclosed within more than the variable’s level of nesting of ellipses,
are extension to R7RS, and defined in SRFI-149. In the above examples, ellipsis-test,
my-append and my-append?2 are outside of R7RS.

Identifiers in a pattern is treated as pattern variables. But sometimes you want to match a
specific identifier in the input. For example, the built-in cond and case detects an identifier
else as a special identifier. You can use literal ... for that. See the following example.

(define-syntax if+
(syntax-rules (then else)
[(_ test then exprl else expr2) (if test exprl expr2)]))

The identifiers listed as the literals don’t become pattern variables, but literally match the
input. If the input doesn’t have the same identifier in the position, match fails.

(if+ (even? x) then (/ x 2) else (/ (+ x 1) 2))
expands into (if (even? x) (/ x 2) (/ (+ x 1) 2))

(if+ (even? x) foo (/ x 2) bar (/ (+ x 1) 2))
= ERROR: malformed if+

We’ve been saying identifiers instead of symbols. Roughly speaking, an identifier is a symbol
with the surrounding syntactic environment, so that they can keep identity under renaming
of hygiene macro.

The following example fails, because the else passed to the if+ macro is the one locally
bound by let, which is different from the global else when if+ was defined, hence they
don’t match.

(let ((else #f))
(if+ (even? x) then (/ x 2) else (/ (+ x 1) 2))
= ERROR: malformed if+

5.2.2 Explicit-renaming macro transformer

er-macro-transformer procedure-expr [Special Form]
Creates a macro transformer from the given procedure-expr. The created macro transformer
has to be bound to the syntactic keyword by define-syntax, let-syntax or letrec-syntax.
Other use of macro transformers is undefined.

The procedure-expr must evaluate to a procedure that takes three arguments; form, rename
and id="7.

The form argument receives the S-expression of the macro call. The procedure-expr must
return an S-expression as the result of macro expansion. This part is pretty much like the

Chapter 5: Macros 91

traditional lisp macro. In fact, if you ignore rename and id=?, the semantics is the same as
the traditional (unhygienic) macro. See the following example (Note the use of match; it is a
good tool to decompose macro input):

(use util.match)

;; Unhygienic ’when-not’ macro
(define-syntax when-not
(er-macro-transformer
(" [form rename id=7]
(match form
[(_ test exprl expr ...)
“(if (not ,test) (begin ,exprl ,@expr))]
[_ (error "malformed when-not:" form)]))))

(macroexpand ’(when-not (foo) (print "a") ’boo))
= (if (not (foo)) (begin (print "a") ’boo))

This is ok as long as you know you don’t need hygiene—e.g. when you only use this macro
locally in your code, knowing all the macro call site won’t contain name conflicts. However,
if you provide your when-not macro for general use, you have to protect namespace pollution
around the macro use. For example, you want to make sure your macro work even if it is
used as follows:

(let ((not values))
(when-not #t (print "This shouldn’t be printed")))

The rename argument passed to procedure-expr is a procedure that takes a symbol (or, to
be precise, a symbol or an identifier) and effectively renames it to a unique identifier that
keeps identity within the macro definition environment and won’t be affected in the macro
use environment.

As a rule of thumb, you have to pass all new identifiers you insert into macro output to the
rename procedure to keep hygiene. In our when-not macro, we insert if, not and begin into
the macro output, so our hygienic macro would look like this:

(define-syntax when-not
(er-macro-transformer
(" [form rename id=7]
(match form
[(_ test exprl expr ...)
“(,(rename ’if) (,(rename ’not) ,test)
(, (rename ’begin) ,exprl ,Qexpr))]
[_ (error "malformed when-not:" form)]))))

This is cumbersome and makes it hard to read the macro, so Gauche provides an auxiliary
macro quasirename, which works like quasiquote but renaming identifiers in the form. See
the entry of quasirename below for the details. You can write the hygienic when-not as
follows:

(define-syntax when-not
(er-macro-transformer
(" [form rename id=7]
(match form
[(_ test exprl expr ...)
(quasirename rename
‘(if (not ,test) (begin ,exprl ,Q@expr)))]
[_ (error "malformed when-not:" form)]))))

Chapter 5: Macros 92

You can intentionally break hygiene by inserting a symbol without renaming. The following
code implements anaphoric when, meaning the result of the test expression is available in the
exprl exprs ... with the name it. Since the binding of the identifier it does not exist in
the macro use site, but rather injected into the macro use site by the macro expander, it is
unhygienic.
(define-syntax awhen
(er-macro-transformer
(" [form rename id=7]
(match form
[(_ test exprl expr ...)
“(,(rename ’letl) it ,test ; ’it’ is not renamed
(, (rename ’begin) ,exprl ,Qexpr))]))))
If you use quasirename, you can write ,’it to prevent it from being renamed:

(define-syntax awhen
(er-macro-transformer
(" [form rename id=7]
(match form
[(_ test exprl expr ...)
(quasirename rename
“(letl ,’it ,test
(begin ,exprl ,@expr)))1))))
Here’s an example:

(awhen (find odd? ’(0 2 8 7 4))
(print "Found odd number:" it))
= prints Found odd number:7

Finally, the id=7 argument to the procedure-expr is a procedure that takes two arguments,
and returns #t iff both are identifiers and either both are referring to the same binding or
both are free. It can be used to compare literal syntactic keyword (e.g. else in cond and
case forms) hygienically.

The following if=> macro behaves like if, except that it accepts (if=> test => procedure)
syntax, in which procedure is called with the value of test if it is not false (similar to (cond
[test => procedure]) syntax). The symbol => must match hygienically, that is, it must
refer to the same binding as in the macro definition.
(define-syntax if=>
(er-macro-transformer
(" [form rename id=7]
(match form
[(_ test a b)
(if (id=? (rename ’=>) a)
(quasirename rename
‘(let ((t ,test))
(if t (b t))))
(quasirename rename
“(if ,test ,a ,b)))1))))

The call (rename ’=>) returns an identifier that captures the binding of => in the macro
definition, and using id=7 with the thing passed to the macro argument checks if both refer
to the same binding.

(if=> 3 => list) = (3)

(if=> #f => list) = #<undef>

Chapter 5: Macros 93

;3 If the second argument isn’t =>, if=> behaves like ordinary if:
(if=> #t 1 2) =1

;3 The binding of => in macro use environment differs from

;; the macro definition environment, so this if=> behaves like
;3 ordinary if, instead of recognizing literal =>.

(let ((=> ’o00f)) (if=> 3 => list)) = oof

quasirename renamer quasiquoted-form [Macro]
It works like quasiquote, except that the symbols and identifiers that appear in the “literal”
portion of form (i.e. outside of unquote and unquote-splicing) are replaced by the result
of applying rename on themselves.

The quasiquote-form argument must be a quasiquoted form. The outermost quasiquote ¢ is
consumed by quasirename and won’t appear in the output. The reason we require it is to
make nested quasiquotes/quasirenames work.

For example, a form:

(quasirename r ‘(a ,b ¢ "d"))
would be equivalent to write:

(1ist (r ’a) b (r ’c) "d")

This is not specifically tied to macros; the renamer can be any procedure that takes one
symbol or identifier argument:

(quasirename (~[x] (symbol-append ’x: x)) ‘(+ a ,(+ 1 2) 5))
= (x:+ x:a 3 5)

However, it comes pretty handy to construct the result form in ER macros. Compare the
following two:

(use util.match)

;3 using quasirename
(define-syntax swap
(er-macro-transformer
C“[f r c]
(match £
[(_ a b) (quasirename r
“(let ((tmp ,a))
(set! ,a ,b)
(set! ,b tmp)))I1))))

;3 not using quasirename
(define-syntax swap
(er-macro-transformer
i rcl
(match f
[(_ ab) ‘((r’let) (((r’tmp) ,a))

((r’set!) ,a ,b)
((r’set!) ,b (r’tmp)))I1))))

Note: In Gauche 0.9.7 and before, quasirename didn’t use quasiquoted form as the second
argument; you can write (quasirename r form) instead of (quasirename r ‘form).

For the backward compatibility, we support the form without quasiquote by default for a
while.

Chapter 5: Macros 94

If you already have a quasirename form that does intend to produce a quasiquoted form, you
have to rewrite it with double quasiquote: (quasirename r ¢ ‘form).

To help transition, the handling of quasiquote in of quasirename can be customized with the
environment variable GAUCHE_QUASIRENAME_MODE. It can have one of the following values:

legacy Quasirename behaves the same way as 0.9.7 and before; use this to run code for
0.9.7 without any change.

compatible
Quasirename behaves as described in this entry; if form lacks a quasiquote, it
silently assumes one. Existing code should work, except the rare case when you
intend to return a quasiquoted form.

warn Quasirename behaves as described in this entry, but warns if form lacks a
quasiquote.
strict Quasirename raises an error if form lacks a quasiquote. This will be the default

behavior in future.

5.3 Traditional macros

define-macro name procedure [Special Form]

define-macro (name . formals) body . .. [Special Form]
Defines name to be a global macro whose transformer is procedure. The second form is a
shorthand notation of the following form:

(define-macro name (lambda formals body ...))

When a form (name arg ...) is seen by the compiler, it calls procedure with arg When
procedure returns, the compiler inserts the returned form in place of the original form, and
compile it again.

To avoid name conflict with the bindings inserted by the macro, you can use gensym, just
like traditional Lisp macros (see Section 6.7 [Symbols], page 149).

(define-macro (if-letl var test then else)
(letl tmp (gensym)
“(let ((,tmp ,test))
(if ,tmp ,then ,else))))

(macroexpand ’(if-letl v (find odd? ’(2 4 6 7 8))
(x v v)
#1))
= (let ((#:G1013 (find odd? (quote (2 4 6 7 8)))))
(if #:G1013 (x v v) #f))

Note that gensym can’t protect name conflict with global bindings inserted by the macro.
Section 5.1 [Why hygienic?], page 84, discusses this issue.

5.4 Hybrid macros

A hybrid macro is both a macro and a procedure simultaneously. If a symbol bound to a hybrid
macro appears in the first position of a form, it behaves like a macro and the form is expanded
accodring to its macro expander. If a symbol appears other places, it is evaluated to a procedure
at runtime.

It can realize so-called “compiler macros”—at a compile time, the macro part examines the
arguments and can transform the form as desired. In all other circumstances, it behaves like a
normal procedure binding, so you can pass the procedure to map, for example.

Chapter 5: Macros 95

define-hybrid-syntax variable expr transformer-spec [Macro]
Binds variable to both an ordinary Scheme value and a macro simultaneously. At the compile
time, transformer-spec is evaluated; it must yield a macro in the the compile-time environ-
ment, and bound to variable to be used at macro expansion. At the execution time, expr is
evaluated and bound to variable to be used as a run-time value.

The macro transformer can return the input form as is (that is, returns an object eq? to the
input form), to indicate that it doesn’t need to expand it. In that case, Gauche compiles the
form as an ordinary procedure call, to use the value of expr at run-time.

Note: If what you want to do with the hybrid macro is just to inline-expand the procedure
body, use define-inline (see Section 4.10 [Definitions|, page 65).

Note about the syntax: Traditionally in Lisp, compiler macros are defined by a separate form
from the procedure binding.

However, having bindings to the same identifier twice makes the program semantics ambigu-
ous. What if the two forms are separated into different modules? What if the identifier is
redefined? It would be clearer that single form determines the binding.

5.5 Identifiers

In the discussion of hygienic macros, we keep saying the symbols are effectively renamed. What
it means is that we don’t actually create a new symbol with a new name. We have to remember
the origin of the renamed symbol to resolve the scope of the variable, and having a separate
table to keep track of renamed symbols would be costly. Instead, the “rename” procedure wraps
the symbols in the input with syntactic information.

When you play with macro internals, you’ll see an object that is printed something like
#<identifier user#foo.fb4ca828>. That’s the wrapped symbol.

If one macro output is passed to another macro expander, the wrapped symbol may further
be wrapped.

The macro expander must assume that symbols in the input are already wrapped by another
macro expander. So, instead of calling it a “symbol”, we call it an “identifier”. An identifier is
something that usually works as a variable or a syntactic keyword in the prorgam. It may be a
symbol or a wrapped identifier. (Note that symbols in quoted literals are bare symbols, for the
quote form strips wrappers.)

Legacy Lisp macros sometimes examines the symbols in the input form. In Scheme, you
have to treat the input program as a tree of identifiers and other objects. You can test whether
an object is an identifier or not by identifier?, where traditional Lisp macor would have
used symbol?. To compare identifiers, you need to use the “compare” procedure passed to the
er-macro expander, or free-identifier="7.

<identifier> [Builtin Class]
A class of wrapped identifier. It is created as a result of “renaming” in the hygienic macro
expander.
A wrapped identifier contains transient information about the program source, and cannot
be portably saved or passed around; it is only valid in the macro expansion phase.

For the details of identifier, see Section 5.5 [Identifiers], page 95.

identifier? obj [Function]
Returns #t if obj is either a symbol or a wrapped identifier. Returns #f otherwise.
Note: In R6RS, identifier? only returns #t for an identifier object, which is of a disjoint
type from symbols. You can use wrapped-identifier? below to check if an object is an
identifier other than a symbol.

Chapter 5: Macros 96

wrapped-identifier? obj [Function]
Returns #t iff obj is a wrapped identifier.

This is R6RS’s identifier?.

identifier->symbol obj [Function]
Returns the symbol that is the origin of the obj, which must be either a symbol or a wrapped
identifier.

free-identifier=7 idl id2 [Function]
When both arguments id1 and id2 are wrapped identifiers, returns #t if either (1) idl and
id2 both refer to the same binding, or (2) idl and id2 are both unbound. Otherwise, #f is
returned.

If at least one of id1 or id2 is not a wrapped identifier, #f is returned. Note that bare symbols
can’t be compared with this procedure, for they lack the necessary lexical information. To
obtain a wrapped identifier, you need to pass a bare symbol to the “rename” procedure passed
to the er-macro transformer.

Usually you don’t need to use this procedure directly, for the compare procedure passed to
the er-macro transformer is suffice.

unwrap-syntax form [Function]
Returns a copy of form, except removing wrappings of identifiers in it. The output of
macro expanders contain wrapped identifiers, which is bothersome to see. This procedure
traverses form and replaces any wrapped identifiers with its original symbol, retrieved by
identifier->symbol.

Note that, although the result is an ordinary S-expression easier to read, syntactic information
is completely lost. For example, distinct identifiers can become indistinguishable if they
happen to have the same name (it happens often when you generate temporary variables via
recursive calls of syntax-rules). If you distinguish newly inserted identifiers with the same
name, use unravel-syntax.

unravel-syntax form [Function]
Returns a copy of form while removing wrappings of identifiers in it, but attach suffix if two
distinct identifiers have the same name, so that they won’t be confused.

For example, a common idiom of syntax-rules to generate temporary variables with re-
cursions create all variables with the same name, although each variable is different because
they are inserted by the different invocation of the expander. If you pass its output to
unwrap-syntax, all syntactic information is stripped and these variables can’t be distin-
guished from one another.

This procedure is automatically called with some macro utilities; See Section 5.6.1 [Tracing
macro expansion|, page 97, and see Section 5.6.2 [Expanding macros manually|, page 99, for
the example of output of unravel-syntax.

Note that the global identifiers becomes bare symbols, so you are still unable to tell which
module the global identifiers refer to.

5.6 Debugging macros

Macro expansion happens at the compile time, which makes it difficult to debug. The best way
to avoid headache of macro debugging is not to write macros unless they’re absolutely necessary,
and keep them as simple as possible if you need to write ones.

However, if you find yourself in an unfortunate situation that you have to untangle hairy
macros, Gauche has some tools to help.

Chapter 5: Macros 97

5.6.1 Tracing macro expansion

Macro tracing shows the input to the macro expander and the result of its expansion on selected
macros. Suppose you have the following macro definition. It’s essentially the same as shown in
the definition of letrec in R7RS section 7.3:

(define-syntax my-letrec
(syntax-rules ()
[(_ ((var init) ...) body ...)
(my-letrec "tmps" (var ...) () ((var init) ...) body ...)]
[(_ "tmps" O (tmp ...) ((var init) ...) body ...)
(let ((var ’undefined) ...)
(let ((tmp init) ...)

(set! var tmp)

body ...))]
[(_ "tmps" (xy ...) (tmp ...) binds body ...)
(my-letrec "tmps" (y ...) (newtmp tmp ...) binds body ...)1))

The my-letrec macro uses an idiom to generate temporary variables by looping with "tmps"
tag. You can see how the macro is expanded step by step, by tracing my-letrec:

gosh> (trace-macro ’my-letrec)

(my-letrec)

gosh> (my-letrec [(ev? ("n (if 0) #t (od? (- n 1)))))
(0d? ("n (if (= n 0) #f (ev? (- n 1)))))]

~
I
B

(ev? 3))
Macro input>>>
(my-letrec
(Cev? ("n (if (= n 0) #t (od? (- n 1)))))
(od? ("n (if (= n 0) #f (ev? (- n 1))))))
(ev? 3))

=}

Macro output<<<
(my-letrec
"tmps"
(ev? 0d?)
O
((ev? ("n (if (= n 0) #t (od? (- n 1)))))
(0d? ("n (if (= n 0) #f (ev? (- n 1))))))
(ev? 3))

=}

Macro input>>>
(my-letrec
"tmps"
(ev? o0d?)
O
((ev? ("n (if 0) #t (0d? (- n 1)))))
(0d? ("n (if (= n 0) #f (ev? (- n 1))))))
(ev? 3))

~
Il
=}

Macro output<<<
(my-letrec
n tmps n
(0d?)
(newtmp.0)

Chapter 5: Macros

(Cev? ("n (if 0)
(od? ("n (if (= n 0)
(ev? 3))

~
Il
=}

Macro input>>>
(my-letrec
"tmps"
(0d?)
(newtmp.0)
((ev? ("n (if
(od? ("n (if (=
(ev? 3))

0)
0)

~
Il
B B

Macro output<<<
(my-letrec
n tmps n
O
(newtmp.1 newtmp.O)
(Cev? ("n (if (= n 0)
(od? ("n (if (= n 0)
(ev? 3))

Macro input>>>
(my-letrec
n tmps n
O
(newtmp.0 newtmp.1)
((ev? ("n (if (= n 0)
(od? (“n (if (= n 0)
(ev? 3))

Macro output<<<
(let

#t
#f

#t
#£

#t
#f

#t
#f

((ev? (quote undefined))

(let

((newtmp.0 ("n (if (= n
(newtmp.1 ("n (if (= n

(set! ev? newtmp.0)
(set! o0d? newtmp.1)
(ev? 3)))

#f

(od?
(ev?

(od?
(ev?

(od?
(ev?

(0d?
(ev?

=}

98

1))
1))

1))
1))

1))
DINN

1))
1))

(0d? (quote undefined)))

0) #t (od? (- n 1)))))
0) #f (ev? (- n 1))

In the above example, the S-expressions after gosh> prompt is what you type; all other things
are Gauche’s answer, including Macro input and Macro output S-expressions

The S-expression shown with Macro input is the input of the macro expander, and the one
with Macro output is the expanded result.
attached, but the tracer strips them off for the legibility.

Actual macro output has syntactic information

Note that the loop introduces new temporary variables with the same name (newtemp), but
they are treated as different identifiers in the macro expansion.

Chapter 5: Macros 99

Once you're done debugging, don’t forget to call untrace-macro with no arguments to remove
macro traces. If there’s a macro trace set, all macro expansions get some overhead, so don’t
leave macro traces.

gosh> (untrace-macro)

#f
trace-macro [Function]
trace-macro boolean [Function]
trace-macro name-or-pattern . . . [Function]

Get/set current macro trace setting. Macro trace setting can be one of the following values:

#f Macro tracing is off. This is the default setting.
#t All macro expansions are traced.
(name-or-pattern ...)

Trace macros that match any one of name-or-pattern, which is either a symbol
or a regexp. If it’s a symbol, a macro whose name is the same as the symbol is
traced. If it’s a regexp, macros whose name match the regexp are traced.

When called without arguments, trace-macro doesn’t change the setting; it returns the
current setting.

When called with single boolean value, it sets the current setting to that value. Returns the
updated setting.

When called with one or more name-or-pattern, it adds them to the current setting. Note
that if the current setting is #t, it remains #t, for all macros are already traced. Returns the
updated setting.

If macro trace settings is not #£f, it incurs overhead for every macro expansion. Be careful
not to leave macro trace set.

The trace information is output to the current trace port. (see Section 6.21.3 [Common port
operations], page 241).

untrace-macro [Function]
untrace-macro name-or-pattern . .. [Function]
When called without arguments, it turns macro trace off.

When called with one or more name-or-pattern, which is either a symbol or a regexp,
untrace-macro removes them from the currently traced macros. Note that if the current
macro trace setting is #t (trace all macros), you can’t remove traced macro individually.

It returns the updated macro trace setting.
5.6.2 Expanding macros manually

macroexpand form :optional env [Function]
macroexpand-1 form :optional env [Function]
If form is a list and its first element is a variable globally bound to a macro, macroexpand-1
invokes its macro transformer and returns the expanded form. Otherwise, returns form as is.

macroexpand repeats macroexpand-1 until the outermost expression of form can’t be ex-
panded. (It doesn’t expand macros other than outermost one. If you want to expand all the
macros within form, use macroexpand-all).

These procedures can be used to expand globally defined macros.

Internally, hygienic macro expansion wraps symbols in form with syntactic information to
keep hygiene. However, such information is hard to read, and not suitable when you just
want to expand a macro in REPL to check its result. So, by default, these procedures strips

Chapter 5: Macros 100

syntactic information. For the identifiers introduced in the macro, it renames them to avoid
name conflicts.

The following example expands my-letrec macro (see Section 5.6.1 [Tracing macro expan-
sion], page 97, for the definition) and results shows temporary variable introduced by the
macro (newtemp) to be renamed.

(macroexpand
>(my-letrec [(ev? ("n (if (= n 0) #t (0d? (- n 1)))))
(od? ("n (if (= n 0) #f (ev? (- n 1)))))]
(ev? 3)))

=

(let

((ev? (quote undefined)) (od? (quote undefined)))

(let
((newtmp.0 ("n (if (= n 0) #t (od? (- n 1)))))
(newtmp.1 ("n (if (= n 0) #f (ev? (- n 1))))))
(set! ev? newtmp.O0)
(set! o0d? newtmp.1)
(ev? 3)))

If you pass a module to the env argument, it is used as the macro use environment. You can
also pass #t to let it use the current runtime environment as the macro use environment. In
those cases, syntactic information in the output won’t be stripped.

If you want to use the output of macroexpand as a program, e.g. embed it into another macro
expansion, you need syntactic information preserved.

macroexpand-all form :optional env [Function]
Fully expand macros inside form. The result only contains function calls and Gauche’s built-in
syntax.

By default, or #t is passed to env, the form is assumed to be a toplevel form within the
current runtime module. You can also pass a module to env to specify the alternative
toplevel environment.

Any local variables introduced in form is renamed to avoid collision. Since each local variable
has unique name, all 1let forms become letrec forms (we can safely replace let with letrec
if no bindings introduced by let shadows outer bindings.)

NB: If a macro in form inserts a reference to a global variable which belongs to other module,
the information is lost in the current implementation. There are a few ways to address this
issue; we may leave such reference as an identifier object, convert it to with-module form,
or introduce a special syntax to represent such case. It’s undecided currently, so do not rely
too much on the current behavior. For the time being, it’s best to use this feature only for
interactive macro testing.

(macroexpand-all
> (letrec-syntax

[(when-not (syntax-rules Q)

[(_ test . body) (if test #f (begin . body))1))]
(let ([if 1list])
(define x (expt foo0))
(letl x 3
(when-not (bar) (if x))))))

= (letrec ((if.0 1list))

Chapter 5: Macros 101

(letrec ((x.1 (expt fo00)))
(letrec ((x.2 ’3))
(if (bar) ’#f (if.0 x.2)))))

Jmacroexpand form [Special Form]
Jmacroexpand-1 form [Special Form]

5.7 Macro utilities

syntax-error msg arg . . . [Macro]

syntax-errorf fmt arg ... [Macro]
Signal an error. They are same as error and errorf (see Section 6.19.2 [Signaling exceptions],
page 230), except that the error is signaled at macro-expansion time (i.e. compile time) rather
than run time.

They are useful to tell the user the wrong usage of macro in the comprehensive way, instead of
the cryptic error from the macro transformer. Because of the purpose, arg ... are first passed
to unwrap-syntax to strip off the internal syntactic binding informations (see Section 5.5
[Identifiers], page 95).

(define-syntax my-macro
(syntax-rules ()
((_ ab) (foo2 a b))
((_ abc) (foo3 a b ¢))
(.

(syntax-error "malformed my-macro" (my-macro . ?7)))))

(my-macro 1 2 3 4)
= error: "malformed my-macro: (my-macro 1 2 3 4)"

102

6 Core library

6.1 Types and classes

Scheme is a dynamically and strongly typed language. That is, every value knows its type at
run-time, and the type determines what kind of operations can be applied on the value.

The Scheme standard is pretty simple on types; basically, an object being a type means the
type predicate returns true on the object, and that’s all. Gauche adopts a bit more elaborated
system—types are first-class objects and you can query various information.

In Gauche, types are conventionally named with brackets < and >, e.g. <string>. It’s nothing
syntactically special with these brackets; they’re valid characters to consist of variable names.

6.1.1 Prescriptive and descriptive types

Types are used in two ways. A type can be seen as a template of the actual values (instances)—
that is, a type prescribes the structure of, and possible operations on, its instances. In Gauche,
such prescriptive types are represented by classes. Every value in Gauche belongs to a class,
which can be queried with the class-of procedure. You can also define your own class with
define-class or define-record-type (see Chapter 7 [Object system|, page 306, and see
Section 9.27 [Record types|, page 469).

A type can also be seen as a constraint of a given expression—that is, a type describes
what characteristics a certain expression must have. Gauche has entities to represent such
descriptive types separate from classes. Descriptive types are created with type constructors
(see Section 6.1.3 [Type expressions and type constructors], page 103).

A value is an instance of a class. For example, 1 is an instance of <integer>, and "xyz" is
an instance of <string>. This presctiptive type relationship is checked with is-a? procedure:
(is-a? 1 <integer>) and (is-a? "xyz" <string>) both returns #t.

On the other hand, you may have a procedure that takes either a number or a string
as an argument. “A number or a string” is a type constraint, and can be expressed as a
descriptive type, (</> <number> <string>). Descriptive type relationship is checked with
of-type? procedure: (of-type? 1 (</> <number> <string>)) and (of-type? "xyz" (</>
<number> <string>)) both returns #t. More conveniently, (assume-type arg (</> <number>
<string>)) would raise an error if arg doesn’t satisfy the given type constraint.

6.1.2 Generic type predicates

A “type predicate” is a predicate that tells if an object is of a specific type; e.g. number? tells
you if the argument is a number. Since types are first-class in Gauche, we have predicates that
can tell an object is of a given type, as well as predicates to ask the relationship between types.

is-a? obj class [Function]
This is a prescriptive types predicate. Returns true iff obj is an instance of class or an
instance of descendants of class.

(is-a? 3 <integer>) = #t
(is-a? 3 <real>) = #t
(is-a? 5+3i <real>) = #f
(is-a? :foo <symbol>) = #f

Note: If obj’s class has been redefined, is-a? also triggers instance update. See Section 7.2.5
[Class redefinition], page 319, for the details.

Chapter 6: Core library 103

of-type? obj type [Function]
This is a descriptie type predicate. Returns true iff obj satisfies the constraints described by
type, which can be either a class (in that case, this is the same as is-a?), or a descriptive
type (see Section 6.1.3 [Type expressions and type constructors|, page 103, below).

(of-type? 1 (</> <number> <string>)) = #t
(of-type? "a" (</> <number> <string>)) = #t
(of-type? ’a (</> <number> <string>)) = #f

subtype? sub super [Function]
Returns #t if a type sub is a subtype of a type super (includes the case that sub is super).
Otherwise, returns #f£.

In general, if sub is a subtype of super, an object that satisfies the constraints of sub also
satisfies the constraints of super, so you can use the object where objects of type super are
expected. In other words, sub is more restrictive than super. If both sub and super are
classes, sub being a subtype of super means sub is a subclass of super.

(subtype? <integer> <real>) = #t
(subtype? <char> (</> <char> <string>)) = #t
(subtype? (</> <integer> <string>) (</> <number> <string>)) = #t

Note that we’re not rigorous on this “substitution principle”, for we don’t aim at guaranteeing
type safety through static analysis. For example, “list of integers” can be used in place of a
generic list most of the time, and (subtype? (<List> <integer>) <list>) is #t. However,
if list is mutated, you can’t replace generic list with a list of integers—because mutators may
try to set non-integer in the list. That kind of cases needs to be handled separately, not on
relying solely on subtype?.

subclass? sub super [Function]
Both arguments must be classes. Returns #t iff sub is a subclass of super. A class is regarded
as a subclass of itself.

6.1.3 Type expressions and type consturctors

Types are first-class objects manipulatable at runtime in Gauche, but they must be known at
compile-time in order to do optimizations or static analysis. In certain places, Gauche requires
the the value of type-yielding expressions to be statically computable. We call such expressions
type expressions.

A type expression is either a global variable reference that are constantly bound to a type,
or a call of type constructor:
<type-expression> : <global-variable-constantly-bound-to-a-type>
| <type-constructor-call>

<type-constructor-call> : (<type-constructor> <type-constructor-argument> ..

<type-constructor-argument> : <type-expression>
| <integer-constant>
| >
| *

All built-in classes, such as <integer>, are statically bound (in precise terms, they are
“inlinable” binding). If you try to alter it, a warning is issued, and the further bahvior will be
undefined. In future, we’ll make it an error to alter the binding of global variables bount to types.
Classes defined with define-class and define-record-type are also bound as inlinable.

Type constructors are special classes whose instances are descriptive types. Type constructors
can be invoked as if they are a procedure, but <type-constructor-call> above is recognized by

D] |

Chapter 6: Core library 104

the compiler and the derived type is computed at compile-time. So, at runtime you only see the
resulting derived type instance.

For example, <?7> is a type constructor that creates “maybe”-like type, e.g. “an integer or
#£”. (Do not confuse this with Maybe type defined in srfi-189, see Section 11.40 [Maybe and
Either optional container types], page 725). A type expression (<?> <integer>) yields such
type (printed as #<?7 <integer>>):

(<?> <integer>) = #<7 <integer>>
It looks like a procedure call, but it s computed at compile time:

gosh> (disasm ("[] (<?> <integer>)))
CLOSURE #<closure (#f)>
=== main_code (name=#f, cc=0x7f5cd76ab540, codevec=...):
signatureInfo: ((#£f))
0 CONST-RET #<7 <integer>>

<?> type [Type Constructor]
Type must be a type expression. This creates a maybe-like type, that is, the object is either
of type or #f. Usually, #f indicates that the value is invalid (e.g. the return value of assoc).

This type has ambiguity when #f can be a meaningful value, but traditionally been used
a lot in Scheme, for it is lightweight. We also have a “proper” Maybe type in srfi-189 (see
Section 11.40 [Maybe and Either optional container types|, page 725) but that involves extra
allocation to wrap the value.

</> type ... [Type Constructor]
Type ... must be type expressions. This creates a sum type of type For example, (</>
<string> <symbol>) is a type that is either a string or a symbol.

<Tuple> type ... [Type Constructor]
Type ... must be type expressions, except that the last argument that may be an identifier
x. This creates a product type of type

Actually, this type is looser than the product types in typical statically-typed languages. Our
tuple is a subtype of list, with types of each positional element are restricted with type
For example, (<Tuple> <integer> <string>) is a list of two elements, the first one being
an integer and the second being a string.

(of-type? ’(3 "abc") (<Tuple> <integer> <string>)) = #t
If you need a more strict and disjoint product type, you can just create a class or a record.
If the last argument is *, the resulting type allows extra elements after the typed elements.

(of-type? ’(3 "abc" 1 2) (<Tuple> <integer> <string> *)) = #t

<™> type ... => type ... [Type Constructor]
Type ... must be type expressions, except that the one right before -> and the last one
may be an identifier *. This creates a procedure type, with the constraints in arguments and
return types. The type ... before => are the argument types, and the ones after -> are the
result types.

The * in the last of argument type list and/or result type list indicates extra elements are
allowed.

In vanilla Scheme, all procedures belong to just one type, that responds true to procedure?.
It is simple and flexible, but sometimes the resolution is too coarse to do reasoning on the
program.

Chapter 6: Core library 105

In Gauche, we can attach more detailed type information in procedures. In the current
version, some built-in procedures already have such type information, that can be retrieved
with procedure-type:

(procedure-type cons) = #<~ <top> <top> -> <pair>>

Not all procedures have such information, though. Do not expect the rigorousness of statically
typed languages.

At this moment, Scheme-defined procedures treats all argument types as <top>. We'll provide
a way to attach type info in future.

<List> type :optional min-length max-length [Type Constructor]

<Vector> type :optional min-length max-length [Type Constructor]
Type must be a type expression. These create a list or a vector type whose elements are of
type, respectively. For example, (<List> <string>) is a list of strings.

The optional arguments must be a literal real numbers that limit the minimum and maximum
length of the list or the vector. When omitted, min-length is zero and max-length is inf .0.

6.1.4 Predefined classes

Predefined classes are bound to a global variable; Gauche’s We’ll introduce classes for each
built-in type as we go through this chapter. Here are a few basic classes to start with:

<top> [Builtin Class]
This class represents the supertype of all the types in Gauche. That is, for any class X,
(subtype? X <top>) is #t, and for any object x, (is-a? x <top>) is #t.

<bottom> [Builtin Class]
This class represents the subtype of all the types in Gauche. For any class X, (subtype?
<bottom> X) is #t, and for any object x, (is-a? x <bottom>) is #f.

There’s no instance of <bottom>.

Note: Although <bottom> is subtype of other types, the class precedence list (CPL) of
<bottom> only contains <bottom> and <top>. It’s because it isn’t always possible to calculate
a linear list of all the types. Even if it is possible, it would be expensive to check and update
the CPL of <bottom> every time a new class is defined or an existing class is redefined.
Procedures subtype? and is-a? treat <bottom> specially.

One of use case of <bottom> is applicable? procedure. See Section 6.15.1 [Procedure class
and applicability], page 208.

<object> [Builtin Class]
This class represents a supertype of all user-defined classes.

class-of obj [Function]
Returns a class metaobject of obj.
(class-of 3) = #<class <integer>>
(class-of "foo") = #<class <string>>

(class-of <integer>) = #<class <class>>

Note: In Gauche, you can redefine existing user-defined classes. If the new definition has dif-
ferent configuration of the instance, class-of on existing instance triggers instance updates;
see Section 7.2.5 [Class redefinition], page 319, for the details. Using current-class-of
suppresses instance updates (see Section 7.3.2 [Accessing instance|, page 323).

Chapter 6: Core library 106

6.2 Equality and comparison

Comparing two objects seems trivial, but if you look into deeper, there are lots of subtleties
hidden in the corners. What should it mean if two procedures are equal to each other? How to
order two complex numbers? It all depends on your purpose; there’s no single generic answer.
So Scheme (and Gauche) provides several options, as well as the way to make your own.

6.2.1 Equality

Scheme has three different general equality test predicates. Other than these, some types have
their own comparison predicates.

eq? objl obj2 [Function]
[R7RS base| This is the fastest and finest predicate. Returns #t if obj1 and obj2 are identical
objects—that is, if they represents the same object on memory or in a register. Notably, you
can compare two symbols or two keywords with eq? to check if they are the same or not.
You can think eq? as a pointer comparison for any heap-allocated objects.

Booleans can be compared with eq?, but you can’t compare characters and numbers reliably—
objects with the same numerical value may or may not eq? to each other. If you identity
comparison needs to include those objects, use eqv? below.

(eq? #t #t) = #t
(eq? #t #f) = #f
(eq? ’a ’a) = #t
(eq? ’a ’b) = #f
(eq? (list ’a) (list ’a)) = #f
(let ((x (1list ’a)))
(eq? x x)) = #t
eqv? objl obj2 [Function]

[R7RS base] When objl and obj2 are both exact or both inexact numbers (except NaN or
-0.0), eqv? returns #t iff (= obj1 obj2) is true. -0.0 is only eqv? to -0.0, and NaN is never
eqv? to anything (including itself).

When obj1 and obj2 are both characters, eqv? returns #t iff (char=7 obj1 obj2) is true.
Otherwise, eqv? is the same as eq? on Gauche.

(eqv? #\a #\a) = #t
(eqv? #\a #\Db) = #f
(eqv? 1.0 1.0) = #t
(eqv? 1 1) = #t
(eqv? 1 1.0) = #f
(eqv? (list ’a) (list ’a)) = #f
(let ((x (1list ’a)))

(eqv? x x)) = #t

Note that comparison of NaNs has some peculiarity. Any numeric comparison fails if there’s
at least one NaN in its argument. Therefore, (= +nan.0 +nan.0) is always #f. However,
Gauche may return #t for (eq? +nan.0 +nan.0) or (eqv? +nan.0 +nan.0).

equal? objl obj2 [Function]
[R7TRS+] If obj1 and obj2 are both aggregate types, equal? compares its elements recursively.
Otherwise, equal? behaves the same as eqv?.

If obj1 and obj2 are not eqv? to each other, not of builtin types, and the class of both objects
are the same, equal? calls the generic function object-equal?. By defining the method,
users can extend the behavior of equal? for user-defined classes.

(equal? (list 1 2) (1list 1 2)) = #t

Chapter 6: Core library 107

(equal? "abc" "abc") = #t
(equal? 100 100) = #t
(equal? 100 100.0) = #f

;5 0.0 and -0.0 is numerically equal (=), but eqv? distingushes them, so as equal?.]]
(equal? 0.0 -0.0) = #f

Note: This procedure correctly handles the case when both obj1 and obj2 have cycles through
pairs and vectors, as required by R6RS and R7RS. However, if the cycle involves user-defined
classes, equal? may fail to terminate.

object-equal? objl obj2 [Generic Function)]
This generic function is called when equal? is called on the objects it doesn’t know about.
You can define this method on your class so that equal? can check equivalence. This method
is supposed to return #t if obj1 is equal to obj2, #f otherwise. If you want to check equivalence
of elements recursively, do not call object-equal? directly; call equal? on each element.

(define-class <foo> ()
((x :init-keyword :x)
(y :init-keyword :y)))

(define-method object-equal? ((a <foo>) (b <foo>))
(and (equal? (slot-ref a ’x) (slot-ref b ’x))
(equal? (slot-ref a ’y) (slot-ref b ’y))))

(equal? (make <foo> :x 1 :y (list ’a ’b))
(make <foo> :x 1 :y (list ’a ’b)))
= #t

(equal? (make <foo> :x 1 :y (make <foo> :x 3 :y 4))
(make <foo> :x 1 :y (make <foo> :x 3 :y 4
= #t

object-equal? (objl <top>) (obj2 <top>) [Method|]
This method catches equal? between two objects of a user-defined class, in case the user
doesn’t define a specialized method for the class.

When called, it scans the registered default comparators that can handle both obj1 and obj2,
and if it finds one, use the comparator’s equality predicate to see if two arguments are equal to
each other. When no matching comparators are found, it just returns #£. See Section 6.2.4.3
[Predefined comparators|, page 115, about the default comparators: Look for the entries of
default-comparator and comparator-register-default!.

Note: If you define object-equal? with exactly the same specializers of this method, you’ll
replace it and that breaks default-comparator operation. Future versions of Gauche will
prohibit such redefinition. For now, be careful not to redefine it accidentally.

Sometimes you want to test if two aggregate structures are topologically equal, i.e., if one
has a shared substructure, the other has a shared substructure in the same way. Equal? can’t
handle it; module util.isomorph provides a procedure isomorphic? which does the job (see
Section 12.77 [Determine isomorphism]|, page 939).

6.2.2 Comparison

Equality only concern about whether two objects are equivalent or not. However, sometimes
we want to see the order among objects. Again, there’s no single “universal order”. It doesn’t
make mathematical sense to ask if one complex number is greater than another, but having some

Chapter 6: Core library 108

artificial order is useful when you want a consistent result of sorting a list of objects including
numbers.

compare objl obj2 [Function]
A general comparison procedure. Returns -1 if objl is less than obj2, 0 if objl is equal to
obj2, and 1 if obj1 is greater than obj2.

If objl and obj2 are incomparable, an error is signalled. However, compare defines total
order between most Scheme objects, so that you can use it on wide variety of objects. The
definition is upper-compatible to the order defined in srfi-114.

Some built-in types are handled by this procedure reflecting “natural” order of comparison if
any (e.g. real numbers are compared by numeric values, characters are compared by char<
etc.) For convenience, it also defines superficial order between objects that doesn’t have
natural order; complex numbers are ordered first by their real part, then their imaginary
part, for example. That is, 1+i comes before 2-i, which comes before 2, which comes before
2+i.

Boolean false comes before boolean true.

Lists are ordered by dictionary order: Take the common prefix. If either one is () and the
other is not, () comes first. If both tails are not empty, compare the heads of the tails. (This
makes empty list the “smallest” of all lists).

Vectors (including uniform vectors) are compared first by their lengths, and if they are the
same, elements are compared from left to right. Note that it’s different from lists and strings.
(compare °(1 2 3) ’(1 3))
= -1 ; (1 2 3) is smaller
(compare ’#(1 2 3) ’#(1 3))

= 1 ; #(1 3) is smaller
(compare "123" "13")
= -1 ; "123" is smaller

If two objects are of subclasses of <object>, a generic function object-compare is called.

If two objects are of different types and at least one of them isn’t <object>, then they are
ordered by their types. Srfi-114 defines the order of builtin types as follows:

1. Empty list.

Pairs.

Booleans.

Characters.

Strings.

Symbols.

Numbers.

Vectors.

Uniform vectors (u8 < s8 < ul6 < s16 < u32 < s32 < u64 < s64 < f16 < 32 < f64)
All other objects.

e A T o

—
e

object-compare objl obj2 [Generic Function]
Specializing this generic function extends compare procedure for user-defined classes.
This method must return either -1 (objl precedes obj2), 0 (objl equals to obj2), 1 (objl
succeeds obj2), or #f (objl and obj2 cannot be ordered).

object-compare (objl <top>) (obj2 <top>) [Method]
This method catches compare between two objects of a user-defined class, in case the user
doesn’t define a specialized method for the class.

Chapter 6: Core library 109

When called, it scans the registered default comparators that can handle both objl and obj2,
and if it finds one, use the comparator’s compare procedure to determine the order of obj1 and
obj2. When no matching comparators are found, it returns #f, meaning two objects can’t be
ordered. See Section 6.2.4.3 [Predefined comparators], page 115, about the default compara-
tors: Look for the entries of default-comparator and comparator-register-default!.

Note: If you define object-compare with exactly the same specializers of this method, you’ll
replace it and that breaks default-comparator operation. Future versions of Gauche will
prohibit such redefinition. For now, be careful not to redefine it accidentally.

eq-compare objl obj2 [Function]
Returns -1 (less than), 0 (equal to) or 1 (greater than) according to a certain total ordering
of obj1l and obj2. Both arguments can be any Scheme objects, and can be different type of
objects. The following properties are guaranteed.

e (eq-compare x y) is 0 iff (eq? x y) is #t.

e The result is consistent within a single run of the process (but may differ between runs).

Other than these, no actual semantics are given to the ordering.

This procedure is useful when you need to order arbitrary Scheme objects, but you don’t care
the actual order as far as it’s consistent.

6.2.3 Hashing

Hash functions have close relationship with equality predicate, so we list them here.

eq-hash obj [Function]

eqv-hash obj [Function]
These are hash functions suitable to be used with eq? and eqv?, respectively. The returned
hash value is system- and process-dependent, and can’t be carried over the boundary of the
running process.

Note: don’t hash numbers by eq-hash. Two numbers are not guaranteed to be eq? even if
they are numerically equal.

default-hash obj [Function]
[R7RS+] This is a hash function suitable to be used with equal?. In R7RS, this is defined in
scheme . comparator (originally in srfi-128).

If obj is either a number, a boolean, a character, a symbol, a keyword, a string, a list, a
vector or a uniform vector, internal hash function is used to calculate the hash value. If obj
is other than that, a generic function object-hash is called to calculate the hash value (see

below).

The hash value also depends on hash-salt, which differs for every run of the process.

portable-hash obj salt [Function]
Sometimes you need to calculate a hash value that’s “portable”, in a sense that the value
won’t change across multiple runs of the process, nor between different platforms. Such hash
value can be used with storing objects externally to share among processes.

This procedure calculates a hash value of obj with such characteristics; the hash value is the
same for the same object and the same salt value. Here “same object” roughly means having
the same external representation. Objects equal? to each other are same. If you write out
an object with write, and read it back, they are also the same objects in this sense.

This means objects without read/write invariance, such as ports, can’t be handled with
portable-hash. It is caller’s responsibility that obj won’t contain such objects.

The salt argument is a nonnegative fixnum and gives variations in the hash function. You
have to use the same salt to get consistent results.

Chapter 6: Core library 110

If obj is other than a number, a boolean, a character, a symbol, a keyword, a string, a list, a
vector, or a uniform vector, this procedure calls a generic function object-hash is called to
calculate the hash value (see below).

legacy-hash obj [Function]
Up to 0.9.4, Gauche had a hash function called hash that was used in both equal?-hashtable
and for the portable hash function. It had a problem, though.

1. There was no way to salt the hash function, which makes the hashtables storing externally
provided data vulnerable to collision attack.

2. The hash function behaves poorly, especially on flonums.

3. There are bugs in bignum and flonum hashing code that have produced different results
on different architectures.

Since there are existing hash values calculated with the old hash function, we preserve the
behavior of the original hash function as legacy-hash. Use this when you need to access
old data. (The hash function also behaves as legacy-hash by default, but it has tweaks; see
below.)

The new code that needs portable hash value should use portable-hash instead.

object-hash obj rec-hash [Generic Function]
By defining a method for this generic function, objects of user-defined types can have a hash
value and can be used in a equal? hash table.

The method has to return an exact non-negative integer, and must return the same value for
two object which are equal?. Furthermore, the returned value must not rely on the platform
or state of the process, if obj is a portable object (see portable-hash above for what is
portable.)

If the method needs to get hash value of obj’s elements, it has to call rec-hash on them. It
guarantees that the proper hash function is called recursively. So you can count on rec-hash
to calculate a portable hash value when object-hash itself is called from portable-hash.

If obj has several elements, you can call combine-hash-value on the elements’ hash values.
(define-class <myclass> () (x y))

;3 user-defined equality function
(define-method object-equal? ((a <myclass>) (b <myclass>))
(and (equal? (ref a ’x) (ref b ’x))
(= (abs (ref a ’y)) (abs (ref b ’y)))))

;; user—-defined hash function
(define-method object-hash ((a <myclass>) rec-hash)
(combine-hash-value (rec-hash (ref a ’x))
(rec-hash (abs (ref a ’y)))))

Note: The base method of object-hash hashes any object to a single hash value (the actual
value depends on hash-salt if object-hash is called from default-hash, and a fixed con-
stant value otherwise. It’s because object’s equality semantics can be customized separately,
and we can’t compute a non-constant hash value without knowing the equality semantics.

This behavior is the last “safety net”; in general, you should define object-hash method on
your class if the instances of your class can ever be hashed.

object-hash (obj <top>) rec-hash [Method]
object-hash (obj <top>) [Method]
These two methods are defined by the system and ensures the backward compatibility and the
behavior of default-comparator. Be careful not to replace these methods by defining the

Chapter 6: Core library 111

exactly same specializers. In future versions of Gauche, attempts to replace these methods
will raise an error.

combine-hash-value ha hb [Function]
Returns a hash value which is a combination of two hash values, ha and hb. The guaranteed
invariance is that if (= hal ha2) and (= hbl hb2) then (= (combine-hash-value hal hbl)
(combine-hash-value ha2 hb2)). This is useful to write user-defined object-hash method.

hash obj [Function]
This function is deprecated.

Calculate a hash value of obj suitable for equal? hash. By default, it returns the same
value as legacy-hash. However, if this is called from default-hash or portable-hash (via
object-hash method), it recurses to the calling hash function.

The behavior is to keep the legacy code work. Until 0.9.5, hash is the only hash function
to be used for both portable hash and equal?-hash, and object-hash method takes single
argument (an object to hash) and calls hash recursively whenever it needs to get a hash value
of other objects pointed from the argument.

As of 0.9.5 we have more than one hash functions that calls object-hash, so the method
takes the hash function as the second argument to recurse. However, we can’t just break the
legacy code; so there’s a default method defined in object-hash which is invoked when no
two-arg method is defined for the given object, and dispatches to one-arg method. As far as
the legacy object-hash code calls hash, it calls proper function. The new code shouldn’t
rely on this behavior, and must use the second argument of object-hash instead.

boolean-hash bool Function]
char-hash char Function
char-ci-hash char Function

[

Fuscion
string-hash str [Function]

[]

[]

[

string-ci-hash str Function
symbol-hash sym Function
number-hash num Function]

[R7TRS comparator] These are hash functions for specific type of objects, defined in R7RS
scheme.comparator. In Gauche, these procedures are just a wrapper of default-hash
with type checks (and case folding when relevant). These are mainly provided to con-
form scheme.comparator; in your code you might just want to use default-hash (or
eq-hash/eqv-hash, depending on the equality predicate).

The case-folding versions, char-ci-hash and string-ci-hash, calls char-foldcase and
string-foldcase respectively, on the argument before passing it to hash. (See Section 6.9
[Characters], page 154, for char-foldcase. See Section 9.36.3 [Full string case conversion],
page 517, for string-foldcase).

hash-bound [Function]

hash-salt [Function]
[R7TRS comparator] Both evaluates to an exact nonnegative integers. In R7RS, these are
defined in scheme.comparator.

(Note: scheme.comparator defines these as macros, in order to allow implementations opti-
mize runtime overhead. In Gauche we use procedures but the overhead is negligible.)
User-defined hash functions can limit the range of the result between 0 and (hash-bound),
respectively, without worrying to lose quality of hash function. (User-defined hash functions
don’t need to honor (hash-bound) at all; hashtables takes modulo when necessary.)

User-defined hash function can also take into account of the value (hash-salt) into hash
calculation; the salt value may differ between runs of the Scheme processes, or even between

Chapter 6: Core library 112

hash table instances. It is to avoid collision attack. Built-in hash functions already takes the
salt value into account, so if your hash function is combining the hash values of primitive
types, you don’t need to worry about salt values.

6.2.4 Basic comparators

Equality and comparison procedures are parameters in various data structures. A treemap needs
to order its keys; a hashtable needs to see if the keys are the same or not, and it also need a
hash function consistent with the equality predicate.

If we want to work on generic data structures, we need to abstract those variations of compar-
ison schemes. So here comes the comparator, a record that bundles closely-related comparison
procedures together.

There are two SRFIs that define comparators. The one that was originally called srfi-128
has now become a part of R7TRS large as scheme.comparator, and we recommend new code to
use it. Gauche has all of scheme . comparator procedures built-in. The older, and rather complex
one is srfi-114; Gauche also supports it mainly for the backward compatibility. Importantly,
Gauche’s native <comparator> object is compatible to both scheme.comparator and srfi-114
comparators.

6.2.4.1 Comparator class and constructors

<comparator> [Builtin Class]
A comparator record that bundles the following procedures:

Type test predicate
Checks if an object can be compared with this comparator.

Equality predicate
See if given two objects are equal to each other; returns a boolean value.

Ordering predicate
Compare given two objects, and returns true iff the first one is strictly precedes
the second one. That is, this is a less-than predicate.

Comparison procedure
Compare given two objects, and returns either -1 (the first one is less than the
second), 0 (they are equal), or 1 (the first one is greater than the second).

Hash function
Returns a hash value of the given object.

Scheme . comparator’s comparators use the ordering predicate, while SRFI-114 comparators
use the comparison procedure. Gauche’s <comparator> supports both by automatically gen-
erating the missing one; that is, if you create a comparator with scheme.comparator inter-
face, by giving an ordering predicate, Gauche automatically fills the comparison procedure,
and if you create one with SRFI-114 interface by giving a comparison procedure, Gauche
generates the ordering predicate.

A comparator may not have an ordering predicate / comparison procedure, and/or a
hash function. You can check if the comparator can be used for ordering or hashing by
comparator-ordered? and comparator-hashable?, respectively.

Some built-in data types such as hashtables (see Section 6.14.1 [Hashtables|, page 197) and
treemaps (see Section 6.14.2 [Treemaps|, page 203), take a comparator in their construc-
tors. The sort and merge procedures also accept comparators (see Section 6.23 [Sorting and
merging], page 269).

Chapter 6: Core library 113

make-comparator type-test equal order hash :optional name [Function]
[R7TRS comparator] Creates a new comparator form the given type-test, equal, order and
hash functions, and returns it. In R7RS, this is defined in scheme.comparator

See the description of <comparator> above for the role of those procedures.

Note: Both scheme.comparator and srfi-114 defines make-comparator, but where
scheme.comparator takes order argument, srfi-114 takes compare argument. Since
scheme. comparator is preferable, we adopt it for the built-in interface, and give a different
name (make-comparator/compare) for SRFI-114 constructor.

Actually, some arguments can be non-procedures, to use predefined procedures, for the
convenience. Even if non-procedure arguments are passed, the corresponding accessors
(e.g. comparator-type-test-procedure for the type-test procedure) always return a
procedure—either the given one or the predefined one.

The type-test argument must be either #t or a predicate taking one argument to test suit-
ability of the object for comparing by the resulting comparator. If it is #t, a procedure that
always return #t is used.

The equal argument must a predicate taking two arguments to test equality.

the order argument must be either #f or a procedure taking two arguments and returning a
boolean value. It must return #t iff the first argument strictly precedes the second one. If
#f is passed, the comparator can not be used for ordering.

The hash argument must be either #£f, or a procedure taking one argument and returning
nonnegative exact integer. If #f is given, it indicates the comparator can’t hash objects; the
predefined procedure just throws an error.

The fifth, optional argument name, is Gauche’s extension. It can be any object but usually
a symbol; it is only used when printing the comparator, to help debugging.

make-comparator/compare type-test equal compare hash :optional name [Function]
This is SRFI-114 comparator constructor. In SRFI-114, this is called make-comparator.
Avoiding name conflict, we renamed it. If you (use srfi-114) you get the original name
make-comparator (and the built-in make-comparator is shadowed). This is provided for the
backward compatibility, and new code should use built-in make-comparator above.

It’s mostly the same as make-comparator above, except the following:

e The third argument (compare) is a comparison procedure instead of an ordering predi-
cate. It must be either #f, or a procedure taking two arguments and returning either -1,
0, or 1, depending on whether the first argument is less than, equal to, or greater than
the second argument. If it is #f, it indicates the comparator can’t order objects.

e You can pass #t to the equal argument when you give a comparison procedure. In that
case, equality is determined by calling the comparison procedure and see if the result is
0.

6.2.4.2 Comparator predicates and accessors

comparator? obj [Function]
[R7TRS comparator| Returns true iff obj is a comparator. In R7RS, this is provided from
scheme.comparator.

object-equal? (a <comparator>) (b <comparator>) [Method]
Comparing two comparators by equal? compares their contents, via this method. Even a
and b are comparators created separately, they can be equal? if all of their slots are the
same.

Chapter 6: Core library 114

This is Gauche’s extension. The standard says nothing about equality of comparators, but
it is sometimes useful if you can compare two.

(equal? (make-comparator #t equal? #f hash ’foo)
(make-comparator #t equal? #f hash ’foo))
= #t

;3 The following may be #t or #f, depending on how the anonymous
;3 procedure is allocated.
(equal? (make-comparator ("x x) eq? #f #f)

(make-comparator ("x x) eq? #f #f))

comparator-flavor cmpr [Function]
Returns a symbol ordering if cmpr is created with scheme.comparator constructor, and
returns comparison if cmpr is created with SRFI-114 constructor.

Usually applications don’t need to distinguish these two kinds of comparators, for either kind
of comparators can behave just as another kind. This procedure is for some particular cases
when one wants to optimize for the underlying comparator implementation.

comparator-ordered? cmpr [Function]

comparator-hashable? cmpr [Function]
[R7RS comparator| Returns true iff a comparator cmpr can be used to order objects, or to
hash them, respectively. In R7RS, this is provided from scheme.comparator.

comparator-type-test-procedure cmpr [Function]
comparator-equality-predicate cmpr [Function]
comparator-ordering-predicate cmpr [Function]
comparator-hash-function cmpr [Function]

[R7TRS comparator] Returns type test procedure, equality predicate, ordering procedure
and hash function of comparator cmpr, respectively. In R7RS, this is provided from
scheme . comparator.

These accessors always return procedures; if you give #f to the order or hash argument of the
constructor, comparator-ordering-predicate and comparator-hash-function still return
a procedure, which will just raise an error.

comparator—-comparison-procedure cmpr [Function]
[SRFI-114] This is a SRFI-114 procedure, but sometimes handy with scheme.comparator
comparators. Returns a procedure that takes two objects that satisfy the type predicates
of cmpr. The procedure returns either -1, 0 or 1, depending on whether the first object is
less than, equal to, or greater than the second. The comparator must be ordered, that is,
it must have an ordering predicate (or a comparison procedure, if it is created by SRFI-114
constructor).

comparator-test-type cmpr obj [Function]

comparator-check-type cmpr obj [Function]
[R7TRS comparator] Test whether obj can be handled by a comparator cmpr, by applying
cmpr’s type test predicate. The former (comparator-test-type) returns a boolean values,
while the latter (comparator-check-type) signals an error when obj can’t be handled.

In R7RS, this is provided from scheme.comparator.

=7 cmpr obj obj2 obj3 . .. [Function]
<7 cmpr obj obj2 obj3 . .. [Function]
<=7 cmpr obj obj2 obj3 . .. [Function]
>? cmpr obj obj2 obj3 . .. [Function]

Chapter 6: Core library 115

>=7 cmpr obj obj2 obj3 . .. [Function]
[R7TRS comparator] Compare objects using a comparator cmpr. All of obj, obj2, obj3 ...
must satisfy the type predicate of cmpr. When more than two objects are given, the order
of comparison is undefined.

In order to use <?, <=7, >? and >=7, comparator must be ordered.

In R7RS, this is provided from scheme.comparator.

comparator-hash cmpr obj [Function]
[R7RS comparator] Returns a hash value of obj with the hash function of a comparator cmpr.
The comparator must be hashable, and obj must satisfy comparator’s type test predicate.

In R7RS, this is provided from scheme.comparator.

comparator-compare cmpr a b [Function]
[SRFI-114] Order two objects a and b using cmpr, and returns either one of -1 (a is less
than b), 0 (a equals to b), or 1 (a is greater than b). Objects must satisfy cmpr’s type test
predicate.

A simple comparison can be done by <7 etc, but sometimes three-way comparison comes
handy. So we adopt this procedure from srfi-114.

6.2.4.3 Predefined comparators

default-comparator [Variable]
[SRFI-114] This variable bounds to a comparator that is used by default in many context.

It can compare most of Scheme objects, even between objects with different types. In fact,
it is defined as follows:

(define default-comparator
(make-comparator/compare #t equal? compare default-hash
’default-comparator))

As you see in the definition, equality, ordering and hashing are handled by equal?, compare
and default-hash, respectively. They takes care of builtin objects, and also equal? and
compare handle the case when two objects () are of different types.

For objects of user-defined classes, those procedures call generic functions object-equal?,
object-compare, and object-hash, respectively. Defining methods for them automatically
extended the domain of default-comparator.

Scheme.comparator defines another way to extend default-comparator. See
comparator-register-default! below for the details.

comparator-register-default! comparator [Function]
[R7TRS comparator] In R7RS, this is provided from scheme.comparator. This
is the scheme.comparator way for user programs to extend the behavior of the
default-comparator (which is what make-default-comparator returns).

Note that, in Gauche, you can also extend default comparator’s behavior by defining special-
ized methods for object-equal?, object-compare and object-hash. See the description of
default-comparator above, for the details.

In fact, Gauche uses those generic functions to handle the registered comparators; methods
specialized for <top> are defined for these generic functions, which catches the case when
default-comparator is applied on object(s) of user-defined classes that don’t have special-
ized methods defined for those generic functions. The catching method examines registered
comparators to find one that can handle passed argument(s), and if it finds one, use it.

You might frown at this procedure having a global side-effect. Well, scheme . comparator ex-
plicitly prohibits comparators registered by this procedure alters the behavior of the default

Chapter 6: Core library 116

comparator in the existing domain—it is only allowed to handle objects that aren’t already
handled by the system’s original default comparator and other already registered compara-
tors. So, the only effect of adding new comparator should make the default comparator work
on objects that had been previously raised an error.

In reality, it is impossible to enforce the condition. If you register a comparator whose
domain overlaps overlaps the domain the default comparator (and its extensions via Gauche’s
methods), the program becomes non-portable at that moment. In the current version, the
comparators registered by comparator-register-default! has the lowest precedence on
the dispatch mechanism, but you shouldn’t count on that.

eq-comparator [Variable]
eqv-comparator [Variable]
equal-comparator [Variable]

[SRFI-114] Built-in comparators that uses eq?, equv? and equal? for the equality predicate,
respectively. They accept any kind of Scheme objects. Each has corresponding hash functions
(i.e. eq-hash for eq-comparator, eqv-hash for eqv-comparator and default-hash for
equal-comparator). Only eq-comparator is ordered, using eq-compare to order the objects
(see Section 6.2.2 [Comparison], page 107, for eq-compare).

Note that eq-comparator and eqv-comparator are not equivalent from what make-eq-
comparator and make-eqv-comparator return, respectively. The latter two are defined in
scheme. comparator and specified to use default-hash for the hash function. It is heav-
ier than eq-hash/eqv-hash, and it can’t be used for circular objects, nor for the mutable
objects with which you want to hash them by identity. We provide eq-comparator and
eqv-comparator in case you want to avoid limitations of default-hash.

boolean-comparator [Variable]

char-comparator [Variable]

char-ci-comparator [Variable]

string-comparator [Variable]

string-ci-comparator [Variable]
[SRFI-114] Compare booleans, characters, and strings, respectively. The *-ci-* variants
uses case-insensitive comparison. All have appropriate hash functions, too.

The string case-insensitive comparison uses Unicode full-string case conversion (see
Section 9.36.3 [Full string case conversion|, page 517).

exact-integer-comparator Variable
integer-comparator Variable
rational-comparator Variable

complex-comparator Variable

number-comparator Variable
[SRFI-114] Compare exact integers, integers, rational numbers, real numbers, complex num-
bers and general numbers, respectively. In Gauche number-comparator is the same as
complex-comparator.

[|
[}
[}
real-comparator [Variable]
[}
[]

The equality are determined by =. For exact integer, integer, rational and real comparators,
the order is the numerical order. Two complex numbers are compared first by their real
components, and then their imaginary components only if the real components are the same.

Note that those comparator rejects NaN. You need make-inexact-real-comparator in
srfi-114 module to compare NaNs with your own discretion. See Section 11.23 [Com-
parators|, page 689, for the details.

Chapter 6: Core library 117

pair-comparator []

list-comparator [Variable]

vector-comparator []

uvector-comparator [|

bytevector-comparator [Variable]
[SRFI-114] The default comparators to compare pairs, lists, vectors, uniform vectors and
bytevectors (which is synonym to u8vector). Their respective elements are compared with
the default comparators.

Note that lists are compared by dictionary order ((1 2 3) comes before (1 3)), while in
vector-families shorter ones are ordered first (#(1 3) comes before #(1 2 3)).

6.2.4.4 Combining comparators

make-default-comparator [Function]
[R7TRS comparator] Returns a default comparator. In Gauche, this returns the
default-comparator object. In R7RS, this is provided from scheme.comparator.

make-eq-comparator [Function]

make-eqv-comparator [Function]
[R7TRS comparator] Returns comparators that use eq? and eqv? for its equality predi-
cate, respectively. Note that they use default-hash for hash functions, as specified by
scheme . comparator, which has a few drawbacks: You can’t use it if you want to hash based
on identity of mutable objects, it diverges on circular objects, and it is slow if applied on a
large structures. We recommend to use eq-comparator or eqv-comparator if possible (see
Section 6.2.4.3 [Predefined comparators], page 115).

In R7RS, this is provided from scheme.comparator.

make-reverse-comparator cmpr [Function]
[SRFI-114] Returns a comparator with the same type test predicate, equality procedure, and
hash function as the given comparator, but the comparison procedure is flipped.

make-key-comparator cmpr test key [Function]
Suppose you have some kind of structure, but you only need to look at one part of it to
compare them.

Returns a new comparator that uses test as type test predicate. Its equality predicate,
comparison procedure and hash function are constructed by applying key to the argument(s)
then passing the result to the corresponding procedure of cmpr. If cmpr lacks comparison
procedure and/or hash function, so does the returned comparator.

In the following example, the tree-map users compares the given user records only by the
username slots:

(use gauche.record)

(define-record-type user #t #t

username ; string
password-hash ; string
comment) ; string
(define users ; table of users, managed by tree-map

(make-tree-map
(make-key-comparator string-comparator user? user-—username)))

Chapter 6: Core library 118

make-tuple-comparator cmprl cmpr? ... [Function]
Creates a comparator that compares lists of the form (x1 x2 ...), where each element is
compared with the corresponding comparator. For example, (make-tuple-comparator cl
c2 c3) will compare three-element list, whose first elements are compared by cl, second
elements by c2 and third elements by c3.

6.3 Numbers

Gauche supports the following types of numbers

multi-precision exact integer
There’s no limit of the size of number except the memory of the machine.

multi-precision exact non-integral rational numbers.
Both denominator and numerator are represented by exact integers. There’s no
limit of the size of number except the memory of the machine.

inexact floating-point real numbers
Using double-type of underlying C compiler, usually IEEE 64-bit floating point
number.

inexact floating-point complex numbers
Real part and imaginary part are represented by inexact floating-point real numbers.

6.3.1 Number classes

<number> [Builtin Class|
<complex> [Builtin Class]
<real> [Builtin Class]
<rational> [Builtin Class]
<integer> [Builtin Class]

These classes consist a class hierarchy of number objects. <complex> inherits <number>,
<real> inherits <complex>,<rational> inherits <real> and <integer> inherits <rational>.

Note that these classes do not exactly correspond to the number hierarchy defined in R7RS.
Especially, only exact integers are the instances of the <integer> class. That is,

(integer? 1) = #t
(is-a? 1 <integer>) = #t
(is-a? 1 <real>) = #t
(integer? 1.0) = #t
(is-a? 1.0 <integer>) = #f
(is-a? 1.0 <real>) = #t

(class-of (expt 2 100)) = #<class <integer>>
(class-of (sqrt -3)) = #<class <complex>>

6.3.2 Numerical predicates

number? obj [Function]
complex? obj [Function]
real? obj [Function]
rational? obj [Function]
integer? obj [Function]

[R7TRS base] Returns #t if obj is a number, a complex number, a real number, a rational
number or an integer, respectively. In Gauche, a set of numbers is the same as a set of

Chapter 6: Core library 119

complex numbers. A set of rational numbers is the same as a set of real numbers, except
+inf.0, -inf.0 and +nan.0 (since we have only limited-precision floating numbers).

(complex? 3+4i) = #t
(complex? 3) = #t
(real? 3) = #t
(real? -2.5+0.0i) = #t
(real? #elel0) = #t
(integer? 3+0i) = #t
(integer? 3.0) = #t
(real? +inf.0) = #t
(real? +nan.0) = #t

(rational? +inf.0) = #f
(rational? +nan.0) = #f

Note: R6RS adopts more strict definition on exactness, and notably, it defines a complex
number with non-exact zero imaginary part is not a real number. Currently Gauche doesn’t
have exact complex numbers, and automatically coerces complex numbers with zero imagi-
nary part to a real number. Thus R6RS code that relies on the fact that (real? 1+0.01) is
#f won’t work with Gauche.

real-valued? obj [Function]
rational-valued? obj [Function]
integer-valued? obj [Function]

[R6RS] In Gauche these are just an alias of real?, rational? and integer?. They are
provided for R6RS compatibility.

The difference of those and non -valued versions in R6RS is that these returns #t if obj
is a complex number with nonexact zero imaginary part. Since Gauche doesn’t distinguish
complex numbers with zero imaginary part and real numbers, we don’t have the difference.

exact? obj [Function]
inexact? obj [Function]
[R7RS base| Returns #t if obj is an exact number and an inexact number, respectively.

(exact? 1) = #t
(exact? 1.0) = #f
(inexact? 1) = #f

(inexact? 1.0) = #t

(exact? (modulo 5 3)) = #t
(inexact? (modulo 5 3.0)) = #f

exact-integer? obj [Function]
[R7RS base] Same as (and (exact? obj) (integer? obj)), but more efficient.

zero? z [Function]
[R7RS base] Returns #t if a number z equals to zero.

(zero? 1) = #f
(zero? 0) = #t
(zero? 0.0) = #t

(zero? 0.0+0.01) = #t

Chapter 6: Core library 120

positive? x [Function]

negative? x [Function]
[R7TRS base] Returns #t if a real number x is positive and negative, respectively. It is an
error to pass a non-real number.

finite? z [Function]
infinite? z [Function]
nan? z [Function]

[R7RS inexact] For real numbers, returns #f iff the given number is finite, infinite, or NaN,
respectively.

For non-real complex numbers, finite? returns #t iff both real and imaginary components
are finite, infinite? returns #t if at least either real or imaginary component is infinite,
and nan? returns #t if at least either real or imaginary component is NaN. (Note: It is
incompatible to R6RS, in which these procedures must raise an error if the given argument
is non-real number.)

In R7RS, these procedures are in (scheme inexact) library.

odd? n [Function]

even? n [Function]
[R7RS base] Returns #t if an integer n is odd and even, respectively. It is an error to pass a
non-integral number.

(0dd? 3) = #t
(even? 3) = #f
(odd? 3.0) = #t

fixnum? n [Function]
bignum? n [Function]
[R7RS fixnum] Returns #t iff n is an exact integer whose internal representation is fiznum
and bignum, respectively. R7RS-large defines fixnum? in scheme.fixnum library; bignum? is
Gauche’s extension. Portable Scheme programs don’t need to care about the internal repre-
sentation of integer. These are for certain low-level routines that does particular optimization.

See Section 10.3.23 [R7RS fixnum], page 629, for the comprehensive fixnum library.

flonum? x [Function]
[R7RS flonum] Returns #t if x is a number represented by a floating-point number, #f
otherwise. In Gauche, inexact real numbers are flonums.

See Section 10.3.24 [R7RS flonum], page 631, for comprehensive flonum library.

ratnum? x [Function]
Returns #t if x is a number represented by an exact non-integral number, or #f otherwise.
Internally, a number that returns #t for it is represented as a pair of two exact integers.

Usually you don’t need to distinguish ratnums from exact integers; you can treat them as
exact numbers. In performance-sensitive code, however, ratnum slows down computation a
lot and you may want to detect that case.

6.3.3 Numerical comparison

=z12z2z3 ... [Function]
[R7RS base] If all the numbers z are equal numerically, returns #t.
(=22) = #t
(=23) = #f

(= 2/4 1/2) = #t

Chapter 6: Core library 121

Exactness doesn’t affect numerical comparison; inexact 1.0 and exact 1 are = to each other.
Positive inexact zero (0.0) and negative inexact zero (-0.0) are also = to each other. To
distinguish numerically equal exact and inexact number, you have to use eqv? or equal?.

(=2 2.0 = #t
(=2 2.0 2.0+01i) = #t
(= -0.0 0.0) = #t
;3 cf:

(eqv? 2 2.0) = #f

(eqv? -0.0 0.0) = #f
Note that +nan.0 would never = to any number, including itself.

(= +nan.0 +inf.0) = #f
(= +nan.0 +nan.0) = #f

(let ((x +nan.0)) (= x x)) = #f

<xIx2x3... [Function]
<=x1x2x3... [Function]
> x1x2x3 ... [Function]
>=x1 x2x3 ... [Function]

[R7RS base] Returns #t If all the real numbers x are monotonically increasing, monotonically
nondecreasing, monotonically decreasing, or monotonically nonincreasing, respectively.
Since (= 0.0 -0.0) is #t, (> 0.0 -0.0) is #f.

If any of the argument is NaN, the result is always #f. Hence (< x y) = #f does not imply
(C=xy) = #t.

max xI x2 ... [Function]
min xI x2 ... [Function]
[R7RS base| Returns a maximum or minimum number in the given real numbers, respectively.
If any of the arguments are NaN, NaN is returned.
See also find-min and find-max in Section 9.5.2 [Selection and searching in collection],
page 376.

min&max xI x2 ... [Function]
Returns a maximum and minimum number in the given real numbers.

See also find-min&max in Section 9.5.2 [Selection and searching in collection], page 376.

approx=7 x y :optional relative-tolerance absolute-tolerance [Function]
Returns #t iff two numbers are approximately equal within the given error tolerance.

e If at least one of x or y is NaN, returns #£.
e If either one is infinity, returns #t iff the other one is also infinity of the same sign.
e Otherwise, return a boolean value computed as follows:

(<= (abs (- x ¥))
(max (* (max (abs x) (abs y)) relative-tolerance)
absolute-tolerance))

If at least one of x or y are non-real complex number, magnitude is used in place of abs.

When omitted, relative-tolerance is assumed to be (flonum-epsilon), and absolute-
tolerance is (flonum-min-denormalized). That is, by default, approx=7 tolerates 1 ULP
(unit in the last place) error.

The absolute-tolerance argument is useful when arguments are close to zero, in which case
relative tolerance becomes too small.

Chapter 6: Core library 122

flonum-epsilon [Function]
flonum-min-normalized [Function]
flonum-min-denormalized [Function]

Returns flonums with the following characteristics, respectively:

flonum-epsilon
Returns the least positive flonum e such that, for a normalized flonum x, x and
(x x (+ 1.0 e)) are distinguishable.

flonum-min-normalized
Returns the least positive flonum representable as normalized floating-point num-
ber.

flonum-min-denormalized
Returns the least positive flonum representable as denormalized floating-point
number. If the platform doesn’t support denormalized flonum, it returns the
least positive normalized floating number.

6.3.4 Arithmetics

+ 7. [Function]
X Z ... [Function]
[R7RS base] Returns the sum or the product of given numbers, respectively. If no argument
is given, (+) yields 0 and (%) yields 1.
-z1z2 ... [Function]
/ zl z2 ... [Function]
[R7RS base] If only one number z1 is given, returns its negation and reciprocal, respectively.
If more than one number are given, returns:
zl - z2 - 2z3 ...
zl1 /) z2/ z3 ...
respectively.
(- 3 = -3
(- -3.0) = 3.0
(- 5+2i) = -5.0-2.0i
/ 3 = 1/3
(/ 5+2i) = 0.172413793103448-0.06896551724137931
(-521) = 2
(-52.01) = 2.0
(- 5+3i -i) = 5.0+2.01
(/ 14 6) = 7/3
(/ 6+2i 2) = 3.0+1.0i
Note: Gauche didn’t have exact rational number support until 0.8.8; before that, / coerced
the result to inexact even if both divisor and dividend were exact numbers, when the result
wasn’t a whole number. It is not the case anymore.
If the existing code relies on the old behavior, it runs very slowly on the newer versions of
Gauche, since the calculation proceeds with exact rational arithmetics that is much slower
than floating point arithmetics. You want to use /. below to use fast inexact arithmetics
(unless you need exact results).
.7 ... [Function]

X, Z ... [Function]

Chapter 6: Core library 123

-.z1z2... [Function]

/. z1z2 ... [Function]
Like +, *, = and /, but the arguments are coerced to inexact number. So they always return
inexact number. These are useful when you know you don’t need exact calculation and want
to avoid accidental overhead of bignums and/or exact rational numbers.

abs z [Function]
[R7RS+] For real number z, returns an absolute value of it. For complex number z, returns
the magnitude of the number. The complex part is Gauche extension.

(abs -1) =1

(abs -1.0) = 1.0
(abs 1+i) = 1.4142135623731

quotient nl n2 [Function]
remainder nl n2 [Function]
modulo nl n2 [Function]

[R7TRS base] Returns the quotient, remainder and modulo of dividing an integer nl by an
integer n2. The result is an exact number only if both n1 and n2 are exact numbers.

Remainder and modulo differ when either one of the arguments is negative. Remainder R
and quotient @ have the following relationship.

nl =@ * n2 + R
where abs () = floor(abs(n1)/abs(n2)). Consequently, R’s sign is always the same as
nl’s.

On the other hand, modulo works as expected for positive n2, regardless of the sign of nl
(e.g. (modulo -1 n2) == n2 - 1). If n2 is negative, it is mapped to the positive case by the
following relationship.

modulo(nl, n2) = —modulo(—n1, —n2)
Consequently, modulo’s sign is always the same as n2’s.

(remainder 10 3) =1
(modulo 10 3) =1

(remainder -10 3) = -1
(modulo -10 3) = 2

(remainder 10 -3) =1
(modulo 10 -3) = -2

(remainder -10 -3) = -1
(modulo -10 -3) = -1

quotient&remainder nl n2 [Function]
Calculates the quotient and the remainder of dividing integer nl by integer n2 simultaneously,
and returns them as two values.

div xy [Function]
mod x y [Function]
div-and-mod x y [Function]
div0 x y [Function]
mod0 x y [Function]

Chapter 6: Core library 124

divO-and-mod0 x y [Function]
[R6RS] These are integer division procedures introduced in R6RS. Unlike quotient, modulo
and remainder, these procedures can take non-integral values. The dividend x can be an
arbitrary real number, and the divisor y can be non-zero real number.

div returns an integer n, and mod returns a real number m, such that:
e x =ny+ m,and

e 0<=m< |yl.

Examples:
(div 123 10) = 12
(mod 123 10) = 3

(div 123 -10) = -12
(mod 123 -10)

4
w

(div -123 10) = -13
(mod -123 10) =7

(div -123 -10) = 13
(mod -123 -10) = 7

(div 123/7 10/9) = 15
(mod 123/7 10/9) = 19/21
;3 123/7 = 10/9 * 15 + 19/21

(div 14.625 3.75) = 3.0
(mod 14.625 3.75) = 3.375
;3 14.6256 = 3.75 * 3.0 + 3.375

For a nonnegative integer x and an integer y, The results of div and mod matches those of
quotient and remainder. If x is negative, they differ, though.

div-and-mod calculates both div and mod and returns their results in two values.
div0 and mod0 are similar, except the range of m:

e x=ny+m

o -lyl/2<=m< |yl/2

(div0 123 10) = 12
(mod0 123 10) = 3

(div0 127 10) = 13
(mod0 127 10) = -3

(div0 127 -10)
(mod0 127 -10)

4

(div0o -127 10) =
(mod0 -127 10) = 3

(div0 -127 -10) = 13
(mod0 -127 -10) = 3

divO-and-modO calculates both div0 and mod0O and returns their results in two values.

Chapter 6: Core library 125

Here’s a visualization of R6RS and R7RS division and modulo operations: http://blog.
practical-scheme.net/gauche/20100618-integer-divisions It might help to grasp how
they works.

floor-quotient n d [Function]
floor-remainder n d [Function]
floor/ nd [Function]
truncate-quotient n d [Function]
truncate-remainder n d [Function]
truncate/ n d [Function]

[R7RS base] These are integer division operators introduced in R7RS. The names explicitly
indicate how they behave when numerator and/or denominator is/are negative.
The arguments n and d must be an integer. If any of them are inexact, the result is inexact.
If all of them are exact, the result is exact. Also, d must not be zero.
Given numerator n, denominator d, quotient g and remainder r, the following relations are
always kept.
r =n - dq
abs(r) < abs(d)
Now, (floor-quotient n d) and (truncate-quotient n d) are the same as (floor (/ n
d)) and (truncate (/ n d)), respectively. The *-remainder counterparts are derived from
the above relation.
The /-suffixed version, floor/ and truncate/, returns corresponding quotient and remainder
as two values.
(floor-quotient 10 -3) =
(floor-remainder 10 -3) = -
(truncate-quotient 10 -3) =
(truncate-remainder 10 -3) = 1

w N

R7RS division library (scheme.division) introduces other variation of integer divisions (see
Section 10.3.21 [R7RS integer division|, page 624).

ged n ... [Function]
lem n ... [Function]
[R7RS base] Returns the greatest common divisor or the least common multiplier of the given
integers, respectively
Arguments must be integers, but doesn’t need to be exact. If any of arguments is inexact,
the result is inexact.

continued-fraction x [Function]
Returns a lazy sequence of regular continued fraction expansion of finite real number x. An
error is raised if x is infinite or NaN, or not a real number. The returned sequence is lazy, so
the terms are calculated as needed.

(continued-fraction 13579/2468)
= (511122 1 9)

5 ¢ +1 ¢/ (+1((+122 (/ (+1(9)))))))N)
= 13579/2468

(continued-fraction (exact 3.141592653589793))
= (8371512921 11213114332133721132422)

(continued-fraction 1.5625)
= (1.0 1.0 1.0 3.0 2.0)

http://blog.practical-scheme.net/gauche/20100618-integer-divisions
http://blog.practical-scheme.net/gauche/20100618-integer-divisions

Chapter 6: Core library 126

numerator ¢ [Function]
denominator q [Function]
[R7RS base| Returns the numerator and denominator of a rational number q.

rationalize x ebound [Function]
[R7RS base] Returns the simplest rational approximation g of a real number x, such that the
difference between x and q is no more than the error bound ebound.

Note that Gauche doesn’t have inexact rational number, so if x and/or ebound is inexact,
the result is coerced to floating point representation. If you want an exact result, coerce the
arguments to exact number first.

(rationalize 1234/5678 1/1000) = 5/23

(rationalize 3.141592653589793 1/10000)
= 3.141509433962264

(rationalize (exact 3.141592653589793) 1/10000)
= 333/106

(rationalize (exact 3.141592653589793) 1/10000000)
= 75948/24175

;3 Some edge cases

(rationalize 2 +inf.0) = 0
(rationalize +inf.0 0) = +inf.0
(rationalize +inf.0 +inf.0) = +nan.O

floor x [Function]
ceiling x [Function]
truncate x [Function]
round x [Function]

[R7RS base] The argument x must be a real number. Floor and ceiling return a maximum
integer that isn’t greater than x and a minimum integer that isn’t less than x, respectively.
Truncate returns an integer that truncates x towards zero. Round returns an integer that is
closest to x. If fractional part of x is exactly 0.5, round returns the closest even integer.

Following Scheme’s general rule, the result is inexact if x is an inexact number; e.g. (round
2.3) is 2.0. If you need an exact integer by rounding an inexact number, you have to use
exact on the result, or use one of the following procedure ((floor->exact etc).

floor->exact x [Function]
ceiling->exact x [Function]
truncate->exact x [Function]

[}

round->exact x Function
These are convenience procedures of the popular phrase (exact (floor x)) etc.
clamp x :optional min max [Function]

Returns
min if x < min
x if min <= x <= max
max if max < x

If min or max is omitted or #f, it is regarded as —-inf .0 or +inf .0, respectively. Returns an
exact integer only if all the given numbers are exact integers.

(clamp 3.1 0.0 1.0) = 1.0
(clamp 0.5 0.0 1.0) = 0.5
(clamp -0.3 0.0 1.0) = 0.0

Chapter 6: Core library 127

(clamp -5 0) = 0

(clamp 3724 #f 256) = 256
exp z [Function]
log z [Function]
log z1 z2 [Function]
sin z [Function]
cos z [Function]
tan z [Function]
asin z [Function]
acos z [Function]
atan z [Function]
atan y x [Function]

[R7RS inexact] Transcendental functions. Work for complex numbers as well. In R7RS, these
procedures are in the (scheme inexact) module.

The two-argument version of log is added in R6RS, and returns base-z2 logarithm of z1.

The two-argument version of atan returns (angle (make-rectangular x y)) for the real
numbers x and y.

sinh z [Function]
cosh z [Function]
tanh z [Function]
asinh z [Function]
acosh z [Function]
atanh z [Function]
Hyperbolic trigonometric functions. Work for complex numbers as well.
radians->degrees rad [Function]
degrees->radians deg [Function]
Convert radians to degrees and vice versa. The argument must be a real number.
sqrt z [Function]

[R7RS inexact] Returns a square root of a complex number z. The branch cut scheme is the
same as Common Lisp. For real numbers, it returns a positive root.

If z is the square of an exact real number, the return value is also an exact number.

(sqrt 2) = 1.4142135623730951
(sqrt -2) = 0.0+1.41421356237309511i
(sqrt 256) = 16

(sqrt 256.0) = 16.0

(sqrt 81/169) = 9/13

exact-integer-sqrt k [Function]
[R7RS base] Given an exact nonnegative integer k, returns two exact nonnegative integer s
and r that satisfy the following equations:

= (+ (*x s 8) 1)
k< (x (+s1) (+s51))
(exact-integer-sqrt 782763574)
= 27977 and 51045

square z [Function]
[R7RS base| Returns (x z z).

Chapter 6: Core library 128

expt zI1 z2 [Function]
[R7RS base] Returns z1°z2 (z1 powered by z2), where z1 and z2 are complex numbers.

Scheme standard defines (expt 0 0) as 1 for convenience.

expt-mod base exponent mod [Function]
Calculates (modulo (expt base exponent) mod) efficiently.

The next example shows the last 10 digits of a mersenne prime M_74207281 (2°74207281 -
1)

(- (expt-mod 2 74207281 #elelO) 1)

= 1086436351

gamma x [Function]
lgamma x [Function]
Gamma function and natural logarithmic of absolute value of Gamma function.

NB: Mathematically these functions are defined in complex domain, but currently we only
support real number argument.

fixnum-width [Function]
greatest-fixnum [Function]
least-fixnum [Function]

[R6RS] These procedures return the width of fixnum (w), the greatest integer representable
by fixnum (2”(w-1) - 1), and the least integer representable by fixnum (- 2~ (w-1)), respec-
tively. You might want to care the fixnum range when you are writing a performance-critical
section.

These names are defined in R6RS. Common Lisp and ChezScheme have most-positive-
fixnum and most-negative-fixnum.

NB: Before 0.9.5, fixnum-width had a bug to return one smaller than the supposed value.
6.3.5 Numerical conversions

make-rectangular xI x2 [Function]

make-polar xI x2 [Function]
[R7TRS complex] Creates a complex number from two real numbers, xI and x2.
make-rectangular returns xI + ix2. make-polar returns xle~(ix2).

In R7RS, these procedures are in the (scheme complex) library.

real-part z [Function]
imag-part z [Function]
magnitude z [Function]
angle z [Function]

[R7RS complex] Decompose a complex number z and returns a real number. real-part and
imag-part return z’s real and imaginary part, respectively. magnitude and angle return z’s
magnitude and angle, respectively.

In R7RS, these procedures are in the (scheme complex) library.

decode-float x [Function]
For a given finite floating-point number, returns a vector of three exact integers, #(m, e,
sign), where
x = (x sign m (expt 2.0 e))
sign is either 1, 0 or -1.

If x is +inf.0 or —inf.0, m is #t. If x is +nan.0, m is #f.

Chapter 6: Core library 129

The API is taken from ChezScheme.

(decode-float 3.1415926)

= #(7074237631354954 -51 1)

(x 7074237631354954 (expt 2.0 -51))
= 3.1415926

(decode-float +nan.0)
= #@#f 0 -1)

encode-float vector [Function]
This is an inverse of decode-float. Vector must be a three-element vector as returned from
decode-float.

(encode-float ’#(7074237631354954 -51 1))
= 3.1415926

(encode-float ’#(#t 0 1))

= +inf.0
fmod x y [Function]
modf x [Function]
frexp x [Function]
ldexp x n [Function]

[POSIX] These procedures can be used to compose and decompose floating point numbers.
Fmod computes the remainder of dividing x by y, that is, it returns x-n*y where n is the
quotient of x/y rounded towards zero to an integer. Modf returns two values; a fractional
part of x and an integral part of x. Frexp returns two values, fraction and exponent of x,
where x = fraction * 2~ exponent, and 0.5 <= |fraction| < 1.0, unless x is zero. (When x is
zero, both fraction and exponent are zero). Ldexp is a reverse operation of frexp; it returns
a real number x * 27n.

(fmod 32.1 10.0)
(fmod 1.5 1.4)
(modf 12.5)

R 2 R
w o o oN

(frexp 3.14) 85 and 2

(1dexp 0.785 2) .14
exact z [Function]
inexact z [Function]

[R7RS base| Returns an exact or an inexact representation of the given number z, respectively.
Passing an exact number to exact, and an inexact number to inexact, are no-op.

Gauche doesn’t have exact complex number with non-zero imaginary part, nor exact infinites
and NaNs, so passing those to exact raises an error.

(inexact 1) = 1.0
(inexact 1/10) = 0.1

If an inexact finite real number is passed to exact, the simplest exact rational number within
the precision of the floating point representation is returned.

(exact 1.0) =1
(exact 0.1) = 1/10
(exact (/ 3.0)) = 1/3

For all finite inexact real number x, (inexact (exact x)) is always eqv? to the original
number x.

Chapter 6: Core library 130

(Note that the inverse doesn’t hold, that is, an exact number n and (exact (inexact n))
aren’t necessarily the same. It’s because many (actually, infinite number of) exact numbers
can be mapped to one inexact number.)

To specify the error tolerance when converting inexact real numbers to exact rational num-
bers, use rationalize or real->rational.

exact->inexact z [Function]
inexact->exact z [Function]
[R5RS] Converts exact number to inexact one, and vice versa.

In fact, exact->inexact returns the argument as is if an inexact number is passed, and
inexact->exact returns the argument if an exact number is passed, so in Gauche they are
equivalent to inexact and exact, respectively. Note that other R5RS implementation may
raise an error if passing an inexact number to exact->inexact, for example.

Generally exact and inexact are preferred, for they are more concise, and you don’t need
to care whether the argument is exact or inexact numbers. These procedures are for com-
patibility with R5RS programs.

real->rational x :optional hi lo open?” [Function]
Find the simplest rational representation of a finite real number x within the specified error
bounds. This is the low-level routine called by rationalize and exact. Typically you
want to use rationalize (see Section 6.3.4 [Arithmetics], page 122) for this purpose. Use
real->rational only when you need finer control of error bounds.

The result rational value r satisfies the following condition:

(<= (- x 1o) r (+ x hi)) ; when open? is #f
(< (- x1lo) r (+ x hi)) ; otherwise

Note that both hi and lo must be nonnegative.

If hi and/or lo is omitted, it is determined by x: if x is exact, hi and lo are defaulted to zero;
if x is inexact, hi and lo depend on the precision of the floating point representation of x. In
the latter case, the open? also depends on x—it is true if the mantissa of x is odd, and false
otherwise, reflecting the round-to-even rule. So, if you call real->rational with one finite
number, you’ll get the same result as exact:

(real->rational 0.1) = 1/10

Passing zeros to the error bounds makes it return the exact conversion of the floating number
itself (that is, the exact calculation of (* sign mantissa (expt 2 exponent))).

(real->rational 0.1 0 0) = 3602879701896397/36028797018963968

(If you give both hi and lo, but omit open?, we assume closed range.)

number->string z :optional radix use-upper? [Function]

string->number string :optional radix default-exactness [Function]
[R7RS+] These procedures convert a number and its string representation in radix radix
system. radix must be between 2 and 36 inclusive. If radix is omitted, 10 is assumed.

Number->string takes a number z and returns a string. If z is not an exact integer, radix
must be 10. For the numbers with radix more than 10, lower case alphabet character is used
for digits, unless the optional argument use-upper? is true, in that case upper case characters
are used. The argument use-upper? is Gauche’s extension.

String->number takes a string string and parses it as a number in radix radix system. If
the number contains a decimal point, only radix 10 is allowed. If the given string can’t be a
number, #£ is returned.

Chapter 6: Core library 131

The default-exactness optional argument of string->number is Gauche’s extension, and it
must be either #f (default), a symbol exact, or a symbol inexact. If it is either symbol, it
sets the exactness of the number if no exactness prefix (#e or #i) is given.

(string->number "2.718281828459045" 10 ’exact)
= 543656365691809/200000000000000

(string->number "#i2.718281828459045" 10 ’exact)
= 2.718281828459045

(string->number "1/3" 10 ’inexact)
= 0.3333333333333333

(string->number "#e1/3" 10 ’inexact)

= 1/3
x->number obj [Generic Function)]
x->integer obj [Generic Function)]

Generic coercion functions. Returns ‘natural’ interpretation of obj as a number or an exact
integer, respectively. The default methods are defined for numbers and strings; a string is
interpreted by string->number, and if the string can’t be interpreted as a number, 0 is
returned. Other obj is simply converted to 0. If obj is naturally interpreted as a number that
is not an exact integer, x->integer uses round and inexact->exact to obtain an integer.

Other class may provide a method to customize the behavior.

6.3.6 Basic bitwise operations

These procedures treat integers as half-open bit vectors. If an integer is positive, it is regarded
as if infinite number of zeros are padded to the left. If an integer is negative, it is regarded in
2’s complement form, and infinite number of 1’s are padded to the left.

In regard to the names of those operations, there are two groups in the Scheme world;
Gauche follows the names of the original SLIB’s “logical” module, which was rooted in CL.
Another group uses a bit long but descriptive name such as arithmetic-shift.

R7RS bitwise library (see Section 10.3.22 [R7RS bitwise operations|, page 625) provides
additional bitwise operations.

ash n count [Function]
[SRFI-60] Shifts integer n left with count bits. If count is negative, ash shifts n right with
—count bits.
; Note: 6 = [...00110], and
; -6 = [...11010]
(ash 6 2) = 24 ;[...0011000]
(ash 6 -2) = 1 ;[...0000001]
(ash -6 2) = -24 ;[...1101000]
(ash -6 -2) = -2 ;[...1111110]
logand nl ... [Function]
logior nl ... [Function]
logxor nl ... [Function]

[SRFI-60] Returns bitwise and, bitwise inclusive or and bitwise exclusive or of integers nl
.. .. If no arguments are given, logand returns -1, and logior and logxor returns O.

lognot n [Function]
[SRFI-60] Returns bitwise not of an integer n.

logtest nl n2 ... [Function]
[SRFI-60] = (not (zero? (logand n1n2 ...)))

Chapter 6: Core library 132

logbit? index n [Function]
[SRFI-60] Returns #t if index-th bit of integer n is 1, #f otherwise.
bit-field n start end [Function]

[R7RS bitwise] Extracts start-th bit (inclusive) to end-th bit (exclusive) from an exact integer
n, where start < end.

copy-bit index n bit [Function]
[R7RS bitwise| If bit is true, sets index-th bit of an exact integer n. If bit is false, resets
index-th bit of an exact integer n.

copy-bit-field n from start end [Function]
[SRFI-60] Returns an exact integer, each bit of which is the same as n except the start-th bit
(inclusive) to end-th bit (exclusive), which is a copy of the lower (end-start)-th bits of an
exact integer from.

(number->string (copy-bit-field #b10000000 -1 1 5) 2)
= "10011110"

(number->string (copy-bit-field #b10000000 #b010101010 1 7) 2)
= "11010100"

Note: The API of this procedure was originally taken from SLIB, and at that time, the
argument order was (copy-bit-field n start end from). During the discussion of SRFI-60
the argument order was changed for the consistency, and the new versions of SLIB followed it.
We didn’t realize the change until recently - before 0.9.4, this procedure had the old argument
order. Code that is using this procedure needs to be fixed. If you need your code to work
with both versions of Gauche, have the following definition in your code.

(define (copy-bit-field to from start end)
(if (< start end)
(letl mask (- (ash 1 (- end start)) 1)
(logior (logand to (lognot (ash mask start)))
(ash (logand from mask) start)))
from))

logcount n [Function]
[SRFI-60] If n is positive, returns the number of 1’s in the bits of n. If n is negative, returns
the number of 0’s in the bits of 2’s complement representation of n.

(logcount 0) =0
(logcount #b0010) = 1
(logcount #b0110) = 2
(logcount #b1111) = 4

(logcount #b-0001) = O ;; 2’s complement: Lo111111
(logcount #b-0010) = 1 ;; 2’s complement: ..111110
(logcount #b-0011) = 1 ;; 2’s complement: ..111101
(logcount #b-0100) = 2 ;; 2’s complement: .111100

integer-length n [Function]
[R7RS bitwise] Returns the minimum number of bits required to represent an exact integer
n. Negative integer is assumed to be in 2’s complement form. A sign bit is not considered.

(integer-length 255) = 8
(integer-length 256) = 9

Chapter 6: Core library 133

(integer-length -256) = 8
(integer-length -257) = 9

twos—exponent n [Function]
If n is a power of two, that is, (expt 2 k) and k >= 0, then returns k. Returns #£ if n is not
a power of two.

twos-exponent-factor n [Function]
Returns maximum k such that (expt 2 k) is a factor of n. In other words, returns the number
of consecutive zero bits from LSB of n. When n is zero, we return -1 for the consistency of
the following equivalent expression.

This can be calculated by the following expression; this procedure is for speed to save creating
intermediate numbers when n is bignum.

(- (integer-length (logxor n (- n 1))) 1)
This procedure is also equivalent to srfi-60’s log2-binary-factors and first-set-bit (see
Section 11.13 [Integers as bits|, page 677).

6.3.7 Endianness

In the Scheme world you rarely need to know about how the numbers are represented inside
the machine. However, it matters when you have to exchange data to/from the outer world in
binary representation.

Gauche’s binary 1/O procedures, such as in the binary.io module (see Section 12.1 [Bi-
nary 1/0O], page 744) and write-uvector/read-uvector! (see Section 6.13.2 [Uniform vectors],
page 191), take optional endian argument to specify the endianness.

Currently Gauche recognizes the following endiannesses.
big-endian
big Big-endian. With this endianness, a 32-bit integer #x12345678 will be written out
as an octet sequence #x12 #x34 #x56 #x78.

Gauche has been using big-endian, but scheme.bytevector incorporated in R7RS
uses big, so we recognize both.

little-endian
little Little-endian. With this endianness, a 32-bit integer #x12345678 is written out as
an octet sequence #x78 #x56 #x34 #x12.

Gauche has been using little-endian, but scheme.bytevector incorporated in
R7RS uses 1little, so we recognize both.

arm-little-endian
This is a variation of little-endian, and used in ARM processors in some
specific modes. It works just like little-endian, except reading/writing
double-precision floating point number (£64), which is written as two little-endian
32bit words ordered by big-endian (e.g. If machine register’s representation is
#x0102030405060708, it is written as #x04 #x03 #x02 #x01 #x08 #x07 #x06 #x05.

When the endian argument is omitted, those procedures use the parameter default-endian:
default-endian [Parameter]
This is a dynamic parameter (see Section 6.16 [Parameters], page 219) to specify the endian-

ness the binary I/O routines use when its endian argument is omitted. The initial value of
this parameter is the system’s native endianness.

The system’s native endianness can be queried with the following procedure:

native-endian [Function]
Returns a symbol representing the system’s endianness.

Chapter 6: Core library 134

6.4 Booleans

<boolean> [Builtin Class]
A boolean class. Only #t and #f belong to this class.

not obj [Function]
[R7RS base] Returns #t if and only if obj is #f, and returns #f otherwise.

boolean? obj [Function]
[R7RS base| Returns #t if obj is a boolean value.

boolean obj [Function]
Returns #£f iff obj is #£, and returns #t otherwise. Convenient to coerce a value to boolean.

boolean=7 abc ... [Function]
[R7RS base] Every argument must be a boolean value. Returns #t iff all values are the same,
#f otherwise.

6.5 Undefined values

While working with Gauche, sometimes you encounter a value printed as #<undef>, an undefined
value.

gosh> (if #f #t)
#<undef>

It is a value used as a filler where the actual value doesn’t matter, or there’s no other suitable
value, or the binding hasn’t been calculated.

Do not confuse undefined values with unbound variables; A variable can be bound to
#<undef>, for it is just an ordinary first-class value. On the other hand, an unbound vari-
able means there’s no value associated with the variable.

However, #<undef> may be used in certain occasions to indicate that a value is not provided
for the variable. For example, the toplevel variable can be bound to #<undef> if it is defined
by (define variable) form (see Section 4.10 [Definitions|, page 65). An optional procedure
parameter without default value is bound to #<undef> if an actual argument is not given (see
Section 4.3 [Making procedures|, page 46).

Note that it cannot be distinguished from the case a value is actually provided, and the value
just happens to be #<undef>. If you get an #<undef>, you can say at most is that the value
doesn’t matter. You shouldn’t let it carry too much meanings.

The #<undef> value is counted as true value in generalized boolean context, since it is not
#f. However, branching based on #<undef> is dangerous—a procedure that is defined to return
unspecified value may merely returning #<undef> as a provisional value; it will change the return
value in future. Since the return value isn’t specified, no one should be using it. The code that
tests such result value as a generalized boolean may break if the procedure changes the return
value.

In fact, we’ve found that there are quite a few code that accidentally tests #<undef> return
value in conditionals. They can be seeds for future bugs, so we added a feature to warn when
#<undef> value is used in the test of branches. You can turn it on with setting the environment
variable GAUCHE_CHECK_UNDEFINED_TEST. In future, we may turn it on while testing.

One typical case of such accidental use of #<undef> branching is in and-let*; the following
code assumes print always return #<undef>, which is counted as a true value, and expects the
control to proceeed to the next clause. It’ll break if print ever changes so that it may return
#f in some cases.

(and-let* ([var (foo x y z)]

Chapter 6: Core library 135

[(print var)] ;; branch on #<undef>
[baz (bar var)])
L)

Being said that, there are a couple of procedures to deal with undefined values.

undefined? obj [Function]
Returns #t iff obj is an undefined value.

undefined [Function]
Returns an undefined value.

6.6 Pairs and lists

Pairs and lists are one of the most fundamental data structure in Scheme. Gauche core provides
all standard list procedures, plus some useful procedures that are commonly supported in lots
of implementations. If they are not enough, you can find more procedures in the modules
described in Section 10.3.1 [R7RS lists], page 555, and Section 12.74 [Combination library],
page 936. See also Section 9.5 [Collection framework], page 372, and Section 9.30 [Sequence
framework], page 477, for generic collection/sequence operations.

6.6.1 Pair and null class

<list> [Builtin Class]
An abstract class represents lists. A parent class of <null> and <pair>. Inherits <sequence>.

Note that a circular list is also an instance of the <1ist> class, while 1ist? returns false on
the circular lists and dotted lists.

(use srfi-1)
(1ist? (circular-list 1 2)) = #f
(is-a? (circular-list 1 2) <list>) = #t

<null> [Builtin Class]
A class of empty list. () is the only instance.

<pair> [Builtin Class]
A class of pairs.

6.6.2 Mutable and immutable pairs

A pair may be either mutable or immutable. You can desctructively modify mutable pairs with
set-car!, set-cdr!, or other destructive procedures (usually they have ! at the end). An error
is signaled when you try to modify an immutable pair.

In Gauche, both type of pairs can be treated the same unless you try to modify them.
Both satisfies the predicate pair?. If you need to test specifically if a pair is immutable, use
ipair? (see Section 6.6.3 [List predicates|, page 136). The traditional constructor cons creates a
mutable pair; you can create an immutable pair with ipair (see Section 6.6.4 [List constructors],
page 136). More procedures that use immutable pairs are defined in R7RS-large scheme.ilist
module (see Section 10.3.8 [R7RS immutable lists|, page 583).

Note that quoted literals are immutable. Old versions of Gauche wasn’t supported immutable
pairs and quoted literal lists were mutable. If your code accidentally mutate such pairs, you’ll
get an error. If you need to run such code without tracking down the error, you can define the
environment variable GAUCHE_MUTABLE_LITERALS.

Chapter 6: Core library 136

6.6.3 List predicates

pair? obj [Function]
[R7RS base| Returns #t if obj is a pair, #f otherwise.

ipair? obj [Function]
[R7RS ilist] Returns #t iff obj is an immutable pair, #f otherwise.

An immutable pair is indistinguishable from a mutable pair except using this predicate, or
when you attempt to modify it. See Section 6.6.2 [Mutable and immutable pairs|, page 135.

null? obj [Function]
[R7RS base| Returns #t if obj is an empty list, #f otherwise.

null-1list? obj [Function]
[R7RS list] Returns #t if obj is an empty list, #£f if obj is a pair. If obj is neither a pair nor
an empty list, an error is signaled.
This can be used instead of null? to check the end-of-list condition when you want to be
more picky about non-proper lists.

list? obj [Function]
[R7RS base| Returns #t if obj is a proper list, #f otherwise. This function returns #£f if obj
is a dotted or circular list.

See also proper-1ist?, circular-1ist? and dotted-1ist? below.

proper-list? x [Function]
[R7RS list] Returns #t fif x is a proper list, that is, a finite list terminated by ().

circular-list? x [Function]
[R7RS list] Returns #t if x is a circular list. A list is circular if you follow cdr of the pairs
you’ll eventually get to a pair you already visited. It doesn’t necessary that the head of the
list x is a part of the circle. A list isn’t circular by the cycle that involves car of the paris.

dotted-1list? x [Function]
[R7RS list] Returns #t if x is a finite, non-nil-terminated list. This includes non-pair, non-()
values (e.g. symbols, numbers), which are considered to be dotted lists of length 0.

6.6.4 List constructors

cons objl obj2 [Function]
[R7RS base] Constructs a mutable pair of objIl and obj2 and returns it.

(cons ’a ’b) = (a . b)
ipair objl obj2 [Function]
[R7TRS ilist] Constructs an immutable pair of objI and obj2 and returns it.
(ipair ’a ’b) = (a . b)

make-1list len :optional fill [Function]
[R7TRS base] Makes a proper list of length len. If optional argument fill is provided, each
element is initialized by it. Otherwise each element is undefined.

(make-list 5 #t) = (#t #t #t #t #t)

list obj ... [Function]
[R7RS base] Makes a list, whose elements are obj
(1ist 1 2 3) = (1 2 3)
(1ist) = O

Chapter 6: Core library 137

ilist obj ... [Function]
[R7RS ilist] Makes a list, whose elements are obj .. ., and which consists of immutable pairs.

(ilist 1 2 3) = (1 2 3)
(ilist) = O

(list-set! (ilist 1 2 3) 1 ’a)
= ERROR: Attempt to modify an immutable pair: (2 3)

list* objl obj2 ... [Function]

cons* objl obj2 ... [Function]
[R7RS list] Like 1ist, but the last argument becomes cdr of the last pair. Two procedures are
exactly the same. Gauche originally had 1ist*, and SRFI-1 (R7RS (scheme list))defines
cons*.

(1istx 1 2 3) = (1 2 . 3)
(1ist* 1) = 1

list-copy list [Function]
[R7RS base] Shallow copies list. If Iist is circular, an error is thrown. (Detecting circular list
is Gauche’s extension; R7RS allows the procedure to diverge.)

iota count :optional (start 0) (step 1) [Function]
[R7RS list] Returns a list of count numbers, starting from start, increasing by step. Count
must be a nonnegative integer. If both start and step are exact, the result is a list of exact
numbers; otherwise, it is a list of inexact numbers.

(iota 5) = (01234
(iota 5 1 3/7) = (1 10/7 13/7 16/7 19/7)
(iota 56 0 -0.1) = (0 -0.1 -0.2 -0.3 -0.4)

This creates a list eagerly. If the list is short it is fast enough, but if you want to count tens
of thousands of numbers, you may want to do so lazily. See liota (see Section 6.18.2 [Lazy
sequences|, page 223).

cond-list clause . .. [Macro]
Construct a list by conditionally adding entries. Each clause has a test and expressions. When
its test yields true, the result of associated expression is used to construct the resulting list.
When the test yields false, nothing is inserted.

Clause must be either one of the following form:

(test expr ...)
Test is evaluated, and when it is true, expr ... are evaluated, and the return
value becomes a part of the result. If no expr is given, the result of test is used
if it is not false.

(test => proc)
Test is evaluated, and when it is true, proc is called with the value, and the
return value is used to construct the result.

(test @ expr ...)
Like (test expr ...), except that the result of the last expr must be a list, and
it is spliced into the resulting list, like unquote-splicing.

(test => @ proc)
Like (test => proc), except that the result of proc must be a list, and and it is
spliced into the resulting list, like unquote-splicing.

Chapter 6: Core library 138

(let ((alist ’((x 3) (y -1) (z 6))))
(cond-list ((assoc ’x alist) ’have-x)
((assoc ’w alist) ’have-w)
((assoc ’z alist) => cadr)))
= (have-x 6)

(let ((x 2) (y #£) (z 5))
(cond-list (x @ ‘(:x ,x))
y e ‘Cy ,y))
(z @ “C:z ,z)))
= (:x 2 :z 5)

6.6.5 List accessors and modifiers
car pair [Function]

cdr pair [Function]
[R7RS base] Returns car and cdr of pair, respectively.

set-car! pair obj [Function]
set-cdr! pair obj [Function]
[R7RS base] Modifies car and cdr of pair, by obj, respectively.
Note: (setter car) = set-car!, and (setter cdr) = set-cdr!.
caar pair [Function]
cadr pair [Function]
cdddar pair [Function]
cddddr pair [Function]

[R7RS base|[R7TRS cxr] caar = (car (car x)), cadr = (car (cdr x)), and so on.
In R7RS, more than two-level of accessors are defined in the (scheme cxr) library.
The corresponding setters are also defined.
(let ((x (1ist 1 2 3 4 5)))
(set! (caddr x) -1)
x)
= (1 2-145)

length list [Function]
[R7RS base| Returns the length of a proper list list. If list is a dotted list, an error is signaled.
If list is a circular list, this function diverges.

length+ x [Function]
[R7RS list] If x is a proper list, returns its length. For all other x, including a circular list, it
returns #f.

length=7 x k [Function]
length<? x k [Function]
length<=7 x k [Function]
length>? x k [Function]
length>=7 x k [Function]

Returns #t iff x is a (possibly improper) list whose length is equal to, less than, less than
or equal to, greater than, or greater than or equal to an exact integer k, respectively. This
procedure only follows the list up to the k items, so it doesn’t realize elements of lazy sequence
more than needed (See Section 6.18.2 [Lazy sequences], page 223, for the lazy sequences).

Chapter 6: Core library 139

Dotted lists and circular lists are allowed. For the dotted list, the cdr of the last pair isn’t
counted; that is, a non-pair object has length 0, and (a . b) has length 1. A circular list is
treated as if it has infinite length.

(length<=7 ’(a b) 2) = #t
(length<=? ’(a b) 1) = #f
(length<=? () 0) = #t

;; dotted list cases

(length<=? ’a 0) = #t
(length<=? ’(a . b) 0) = #f
(length<=? ’(a . b) 1) = #t

NB: The name of these procedures might be misleading, for other procedures with the name
something<=7 etc. usually takes objects of the same type. We don’t have any better idea
now, unfortunately.

take x i [Function]
drop x 1 [Function]

[R7TRS list] take returns the first i elements of list x. drop returns all but the first i elements
of list x.

(take ’(a b cde) 2) => (ab)
(drop (@b cde) 2) => (cde)

x may be any value:

(take ’(1 23 . d) 2) => (1 2)
(drop (1 23 .4d) 2) => (3. d
(drop ’(1 23 . d) 3) =>4d

drop is exactly equivalent to performing i cdr operations on x. The returned value shares
a common tail with x. On the other hand, take always allocates a new list for result if the
argument is a list of non-zero length.

An error is signaled if i is past the end of list x. See take* and drop* below for more tolerant
version.

For generic subsequence extraction from any sequence, see subseq in Section 9.30.2 [Slicing
sequence], page 478.

takex list k :optional (fill? #f) (padding #f) [Function]
drop* list k [Function]

More tolerant version of take and drop. They won’t raise an error even if k is larger than
the size of the given list.

If the list is shorter than k elements, take* returns a copy of list by default. If fill” is true,
padding is added to the result to make its length k.

On the other hand, drop#* just returns an empty list when the input list is shorter than k
elements.

(take*x (a b c d) 3) = (a b c)

(take* (a b c 4d) 6) = (abcd
(takex ’(a b c d) 6 #t) = (a b c d #f #f)
(take* ’(abcd) 6 #t ’z) = (abcdz z)
(drop* ’(a b ¢ d) 3) = (d)

(drop* ’(a b c d) 5) = 0O

Note: For generic subsequence extraction from any sequence, see subseq in Section 9.30.2
[Slicing sequence|, page 478.

Chapter 6: Core library 140

take-right lis k [Function]
drop-right lis k [Function]
[R7RS list] take-right returns the last k elements of lis. drop-right returns all but the
last k elements of Iis.
(take-right ’(a b c d e) 2) => (d e)
(drop-right (a b cde) 2) => (a b c)

lis may be any finite list.

(take-right (1 23 . d) 2) => (23 . d)
(drop-right (1 2 3 . d) 2) => (1)
(take-right (1 2 3 . d) 0) =>d

(drop-right (1 2 3 . d) 0) => (1 2 3)

take-right’s return value always shares a common tail with lis. drop-right always allocates
a new list if the argument is a list of non-zero length.

An error is signaled if k is larger than the length of lis. See take-right* and drop-right*
below, for more tolerant version.

take-right* list k :optional (fill? #f) (padding #f) [Function]

drop-right* list k [Function]
Like take* and drop*, but counts from right of list. If list is shorter than k elements, they
won’t raise an error. Instead, drop-right* just returns an empty list, and take-right=*
returns list itself by default. If fill? is true for take-right*, padding is added on the left of
the result to make its length k. The result still shares the list.

take! lis k [Function]

drop-right! lis k [Function]
[R7RS list] Linear update variants of take and drop-right. Those procedures may destruc-
tively modifies Iis.

If Iis is circular, take! may return a list shorter than expected.

list-tail list k :optional fallback [Function]
[R7RS base] Returns k-th cdr of list. list can be a proper, dotted or circular list. (If list is a
dotted list, its last cdr is simply ignored).

If k is negative or larger than the length of list, the behavior depends on whether the optional
fallback argument is given or not. If fallback is given, it is returned. Otherwise, an error is
signaled.

list-ref list k :optional fallback [Function]
[R7RS+] Returns k-th element of Iist. list can be a proper, dotted or circular list.

By default, 1ist-ref signals an error if k is negative, or greater than or equal to the length
of list. However, if an optional argument fallback is given, it is returned for such case. This
is an extension of Gauche.

list-set! list kv [Function]
[R7RS base] Modifies the k-th element of a list by v. It is an error unless k is an exact integer
between 0 and one minus the length of k. If list is immutable, no error is signalled but the
behavior is undefined.

last-pair list [Function]
[R7RS list] Returns the last pair of list. list can be a proper or dotted list.
(last-pair (1 2 3)) = (3)
(last-pair (1 2 . 3)) = (2 . 3)
(last-pair 1) = error

Chapter 6: Core library 141

last pair [Function]
[R7RS list] Returns the last element of the non-empty, finite list pair. It is equivalent to (car
(last-pair pair)).

(last (1 2 3)) =3

(last (1 2 . 3)) = 2
split-at x i [Function]
split-at! x1i [Function]

[R7RS list] split-at splits the list x at index i, returning a list of the first i elements, and
the remaining tail.

(split-at ’(abcde) 2) = (ab) (cde)

split-at! is the linear-update variant. It may destructively modifies x to produce the result.

split-atx* list k :optional (fill? #f) (padding #f) [Function]
More tolerant version of split-at. Returns the results of take* and dropx*.
(split-at* ’(a b c d) 6 #t ’z)
= (abcdzz) and O

slices list k :optional fill? padding [Function]
Splits list into the sublists (slices) where the length of each slice is k. If the length of list is
not a multiple of k, the last slice is dealt in the same way as takex*; that is, it is shorter than
k by default, or added padding if fill? is true.

(slices ’(abcdef g 3)
= ((abc) (de f) (g)
(slices ’(abcdef g) 3 #t ’z)
= ((@abc) (de f) (g z2))

intersperse item list [Function]
Inserts item between elements in the list. (The order of arguments is taken from Haskell’s
intersperse).
(intersperse ’+ (1 2 3)) = (1 + 2 + 3)
(intersperse ’+ ’ (1)) = (1
(intersperse ’+ ’()) = 0O

6.6.6 Walking over lists

map proc listl list2 . .. [Function]
[R7RS+] Applies proc for each element(s) of given list(s), and returns a list of the results.
R7RS doesn’t specify the application order of map, but Gauche guarantees proc is always
applied in order of the list(s). Gauche’s map also terminates as soon as one of the list is
exhausted.

(map car *((a b) (c d) (e £))) = (a c e)

(map cons ’(a b c) ’(d e 1))
= ((a. d (b .e) (c. £

Note that the gauche.collection module (see Section 9.5 [Collection framework], page 372)
extends map to work on any type of collection.

append-map f clistl clist2 . .. [Function]
append-map! f clistl clist2 . .. [Function]
[R7RS list] Functionally equivalent to the followings, though a bit more efficient:

(apply append (map f clistl clist2 ...))

Chapter 6: Core library 142

(apply append! (map f clistl clist2 ...))

At least one of the list arguments must be finite.

map* proc tail-proc list1 list2 . .. [Function]
Like map, except that tail-proc is applied to the cdr of the last pair in the argument(s) to
get the cdr of the last pair of the result list. This procedure allows improper list to appear
in the arguments. If a single list is given, tail-proc always receives a non-pair object.

(map* - / ’(1 23 . 4)) = (-1 -2 -3 . 1/4)

(define (proper lis)
(map* values
(lambda (p) (if (null? p) (O (list p)))
lis))

(proper (1 2 3)) = (12 3)
(proper (1 23 . 4)) = (1 23 4)

If more than one list are given, the shortest one determines how tail-proc is called. When
map* reaches the last pair of the shortest list, tail-proc is called with cdrs of the current pairs.

(map* + vector (1 23 4) (1 2 . 3))
= (2 4 . #((3 4) 3))

Note: The name map* is along the line of 1ist*/cons* that can produce improper list (See
Section 6.6.4 [List constructors|, page 136, see Section 10.3.1 [R7RS lists]|, page 555).

for-each proc list1 list2 . . . [Function]
[R7RS base|] Applies proc for each element(s) of given list(s) in order. The results of proc
are discarded. The return value of for-each is undefined. When more than one list is given,
for-each terminates as soon as one of the list is exhausted.

Note that the gauche. collection module (see Section 9.5 [Collection framework], page 372)
extends for-each to work on any type of collection.

fold kons knil clistl clist2 . .. [Function]

[R7RS list] The fundamental list iterator. When it is given a single list clist] = (el e2 ...
en), then this procedure returns

(kons en ... (kons e2 (kons el knil)) ...)
If n list arguments are provided, then the kons function must take n+1 parameters: one
element from each list, and the "seed" or fold state, which is initially knil. The fold operation
terminates when the shortest list runs out of values. At least one of the list arguments must
be finite.
Examples:

(fold + 0 ’(3 1415 9)) = 23 ;sum up the elements

(fold cons ’() ’(abcde)) = (edcb a) ;reverse

(fold cons* () (abc) ’(1 2345))

= (c 3 b 2 a 1) ;n-ary case

fold-right kons knil clistl clist2 . .. [Function]
[R7RS list] The fundamental list recursion operator. When it is given a single list clist] =
(el €2 ... en), then this procedure returns
(kons el (kons e2 ... (kons en knil)))

If n list arguments are provided, then the kons function must take n+1 parameters: one
element from each list, and the "seed" or fold state, which is initially knil. The fold operation

Chapter 6: Core library 143

terminates when the shortest list runs out of values. At least one of the list arguments must
be finite.

Examples:

(fold-right cons () ’(a b c d e))
= (a b cde) ;copy list

(fold-right cons*x () ’(a b c) (1 2 3 4 5))
= (a1 b 2 c 3) ;n-ary case

fold-left snok knil clistl clist2 . .. [Function]
[R6RS] This is another variation of left-associative folding. When it is given a single list
clistl = (el e2 ... en), then this procedure returns:

(snok (... (snok (snok knil el) e2) ...) en)

Compare this with fold above; association is the same, but the order of arguments passed to
the procedure snok is reversed from the way arguments are passed to kons in fold. If snok
is commutative, fold and fold-left produces the same result.

(fold-left + 0 ’(1 2 3 4 5) = 15

(fold-left cons ’z (a b c d))
= ((((z.a .b).c).d

(fold-left (“[a b] (cons b a)) ’z ’(a b c d))
= (abcdz)

If more than one lists are given, snok is called with the current seed value knil and each
corresponding element of the input lists clistl clist2

(fold-left list ’z (a b c) (A B C))
= (((zahA) bB) cC)

Note: Most functional languages have left- and right- associative fold operations, which
correspond to fold-left and fold-right, respectively. (e.g. Haskell’s foldl and foldr).
In Scheme, SRFI-1 first introduced fold and fold-right. RG6RS introduced fold-left.
(However, in R6RS the behavior is undefined if the lengths of clistl clist2 ... aren’t the
same, while in Gauche fold-left terminates as soon as any one of the lists terminates.)

reduce f ridentity list [Function]

reduce-right f ridentity list [Function]
[R7RS list] Variant of fold and fold-right. f must be a binary operator, and ridentity is
the value such that for any value x that is valid as f’s input,

(f x ridentity) = x

These functions effectively do the same thing as fold or fold-right, respectively, but omit
the first application of f to ridentity, using the above nature. So ridentity is used only when
list is empty.

filter pred list [Function]

filter! pred list [Function]
[R7RS list] A procedure pred is applied on each element of list, and a list of elements that
pred returned true on it is returned.

(filter odd? (31 45926)) = (3159)

filter! is the linear-update variant. It may destructively modifies list to produce the result.

Chapter 6: Core library 144

filter-map f clistl clist2 ... [Function]
[R7RS list] Like map, but only true values are saved. At least one of the list arguments must
be finite.
(filter-map (lambda (x) (and (number? x) (* x x)))
'(@a1b3cT)

= (1 9 49)
remove pred list [Function]
remove! pred list [Function]

[R7RS list] A procedure pred is applied on each element of list, and a list of elements that
pred returned false on it is returned.

(remove 0dd? (3145 926) = (42 6)
remove! is the linear-update variant. It may destructively modifies list to produce the result.

find pred clist [Function]
[R7RS list] Applies pred for each element of clist, from left to right, and returns the first
element that pred returns true on. If no element satisfies pred, #f is returned.

find-tail pred clist [Function]
[R7TRS list] Applies pred for each element of clist, from left to right, and when pred returns
a true value, returns the pair whose car is the element. If no element satisfies pred, #f is
returned.

any pred clist1 clist2 . .. [Function]
[R7RS list] Applies pred across each element of clists, and returns as soon as pred returns
a non-false value. The return value of any is the non-false value pred returned. If clists are
exhausted before pred returns a non-false value, #£ is returned.

every pred clistl clist2 . .. [Function]
[R7RS list] Applies pred across each element of clists, and returns #f as soon as pred returns
#f. If all application of pred return a non-false value, every returns the last result of the
applications.

count pred clistl clist2 . .. [Function]
[R7RS list] A procedure pred is applied to the n-th element of given lists, from n is zero to the
length of the the shortest finite list in the given lists, and the count of times pred returned
true is returned.
(count even? (3 14159256)) =3
(count < °(1 248) (2468 10 12 14 16)) = 3

At least one of the argument lists must be finite:
(count < ’(3 1 4 1) (circular-list 1 10)) = 2

delete x list :optional elt= [Function]
delete! x list :optional elt= [Function]
[R7RS list] Equivalent to
(remove (lambda (y) (elt= x y)) list)
(remove! (lambda (y) (elt= x y)) list)
The comparison procedure, elt=, defaults to equal?.

delete-duplicates list :optional elt= [Function]

delete-duplicates! list :optional elt= [Function]
[R7RS list] Removes duplicate elements from list. If there are multiple equal elements in list,
the result list only contains the first or leftmost of these elements in the result. The order of
these surviving elements is the same as in the original list. The comparison procedure, elt=,
defaults to equal?.

Chapter 6: Core library 145

6.6.7 Other list procedures

append list ... [Function]
[R7RS base] Returns a list consisting of the elements of the first list followed by the elements
of the other lists. The resulting list is always newly allocated, except that it shares structure
with the last list argument. The last argument may actually be any object; an improper list
results if the last argument is not a proper list.

append! list ... [Function]
[R7RS list] Returns a list consisting of the elements of the first list followed by the elements
of the other lists. The cells in the lists except the last one may be reused to construct the
result. The last argument may be any object.

concatenate list-of-lists [Function]

concatenate! list-of-lists! [Function]
[R7RS list] Equivalent to (apply append list-of-lists) and (apply append! list-of-
lists), respectively, but this can be a bit efficient by skipping overhead of apply.

reverse list :optional (tail ()) [Function]

reverse! list :optional (tail ’()) [Function]
[R7TRS+] Returns a list consisting of the elements of list in the reverse order. While reverse
always returns a newly allocated list, reverse! may reuse the cells of list. Even list is
destructively modified by reverse!, you should use its return value, for the first cell of list
may not be the first cell of the returned list.

If an optional argument tail is given, it becomes the tail of the returned list (tail isn’t copied).
It is useful in the idiom to prepend the processed results on top of already existing results.

(reverse (1 23 45)) = (54321)
(reverse (1 2 3) ’(a b)) = (321 ahb)

The tail argument is Gauche’s extension, and it isn’t in the traditional Scheme’s reverse.
The rationale is the following correspondence:

(reverse xs) = (fold cons xs ’(Q))
(reverse xs tail) = (fold cons xs tail)

append-reverse rev-head tail [Function]
append-reverse! rev-head tail [Function]

[R7RS list] Equivalent to the two-argument reverse and reverse!. Provided for srfi-1 (R7RS
(scheme list)) compatibility.

memq obj list [Function]
memv obj list [Function]
member obj list :optional obj= [Function]

[R7RS base] Searches obj in the list. If n-th element of list equals to obj (in the sense
of eq? for memq, eqv? for memv, and equal? for member), (list-tail list n) is returned.
Otherwise, #f is returned.

If the optional obj= argument of member is given, it is used as a equivalence predicate instead
of equal?.

(memq ’a ’(a b ¢)) = (a b c)
(memq ’b ’(a b ¢)) = (b c)
(memq ’a ’(b c d)) = #f

(memq (list ’a) ’(b (a) c)) = #f

(memv 101 ’(100 101 102)) = (101 102)

Chapter 6: Core library 146

6.6.8 Association lists

acons objl obj2 obj3 [Function]
Returns (cons (cons obj1 obj2) obj3). Useful to put an entry at the head of an associative
list.

(This procedure is defined in SRFI-1 (R7RS (scheme list)) as alist-cons; see
Section 10.3.1 [R7RS lists|, page 555).

(acons ’a b ’((c . d))) = ((a . b) (c . A))

alist-copy alist [Function]
[R7RS list] Returns a fresh copy of alist. The spine of alist and each cell that points a key
and a value is copied.

(define a (list (comns ’a ’b) (cons ’c ’d)))
a= (a.b) (c. d)

(define b (alist-copy a))
b= ((a.b) (c.d)

(set-cdr! (car a) ’z)
a= (a.z) (c. d)
b= ((a.b) (¢c . d)

assq obj list [Function]
assv obj list [Function]
assoc obj list :optional key= [Function]

[R7RS base| Each element in list should be a pair (Gauche ignores non-pair element in list,
but other R7RS implementation may raise an error, so be aware of it when you’re writing a
portable code). These procedures search a pair whose car matches obj (in the sense of eq?
for assq, eqv? for assv, and equal? for assoc) from left to right, and return the leftmost
matched pair if any. If no pair matches, these return #£.

If the optional argument of assoc is given, it is called instead of equal? to check the equiv-
alence of obj and each key.

alist-delete key alist :optional key= [Function]

alist-delete! key alist :optional key= [Function]
[R7RS list] Deletes all cells in alist whose key is the same as key. Comparison is done by a
procedure key=. The default is eqv?.

The linear-update version alist-delete! may or may not modify alist.

rassoc key alist :optional eq-fn [Function]
rassq key alist [Function]
rassv key alist [Function]

Reverse associations—given key is matched to the cdr of each element in alist, instead of
the car. Handy to realize bidirectional associative list. Rassoc takes an optional comparison
function, whose default is equal?. Rassq and rassv uses eq? and eqv?.

assoc-ref alist key :optional default eq-fn [Function]
assq-ref alist key :optional default [Function]
assv-ref alist key :optional default [Function]

These procedures provide the access to the assoc list symmetric with other *-ref procedures.
(Note that the argument order is different from assoc, assq and assv — *-ref procedures
take a container first, and an item second.)

Chapter 6: Core library 147

This captures the common pattern of alist access:

(assoc-ref alist key default eq-fn)

(cond [(assoc key alist eq-fn) => cdr]
[else default])))
If default is omitted, #f is used.

Assoc-ref takes an optional comparison function eq-fn, whose default is equal?. Assq-ref
and assv-ref uses eq? and eqv?, respectively.

rassoc-ref alist key :optional default eq-fn [Function]
rassq-ref alist key :optional default [Function]
rassv-ref alist key :optional default [Function]

Reverse association version of assoc-ref.

(rassoc-ref alist key default eq-fn)

(cond ((rassoc key alist eq-fn) => car)
(else default))))

The meanings of optional arguments are the same as assoc-ref.

assoc-set! alist key val :optional eq-fn [Function]
assq-set! alist key val [Function]
assv-set! alist key val [Function]

Returns an alist who has (key . val) pair added to the alist. If alist already has an
element with key, the element’s cdr is destructively modified for val. If alist doesn’t have an
element with key, a new pair is created and appended in front of alist; so you should use the
return value to guarantee key-val pair is added.

Assoc-set! takes optional comparison function eq-fn, whose default is equal?. Assq-set!
and assv-set! uses eq? and eqv?, respectively.

assoc-adjoin alist key val :optional eq-fn [Function]
If alist contains an entry with key, returns a new associative list where the value of the key is
replaced for val. The order of entries in alist is preserved. If alist doesn’t contain the entry,
it returns (acons key val alist).

The original alist is left unmodified. The returned associative list may share a part of its tail
with the original alist, however.

The optional eq-fn argument is a procedure with two arguments to be used to compare the
keys; the default is equal?.

Note the order of arguments; we have alist first, just as assoc-ref and assoc-set!, and
other —adjoin procedures. It is not the same as alist-delete and assoc, which takes the
key first.

assoc-update-in alist keys proc :optional default eq-fn [Function]
This procedure allows to update a nested associative list. The alist argument is a (possibly
nested) associative list, keys are a list of keys, and proc is a procedure that takes one argu-
ment. First, the keys are looked up recursively in alist; then its value is passed to proc. The
return value is a new (nested) associative list where the value pointed by keys is replaced
with the return value of proc.

(assoc-update-in ’((a (b . 1) (c . 2))) ’(a c) (cut + <> 1))
= ((a (b . 1) (c . 3))

The order of entries are preserved. The original alist is left unmodified, but the returned
value may share a part of the structure with alist.

Chapter 6: Core library 148

If alist doesn’t have the entry specified by keys, a new entry is added. A new entry is added
at the beginning of the sequence where specified key didn’t exist.

(assoc-update-in ’((a (b . 1) (c . 2))) ’(a d e) ("_ 99))
= ((a (d.99) (. 1) (¢ . 3)))
The default argument is passed to proc when there’s no entry with specified keys. If omitted,
#f is assumed.

The optional eq-fn argument is a procedure with two arguments to be used to compare the
keys; the default is equal?.

Note the order of arguments; we have alist first, just as assoc-ref and assoc-set!, and
other —adjoin procedures. It is not the same as alist-delete and assoc, which takes the
key first.

Note: For destructively updating general nested aggregate structures, setter of ~ is handy
(see Section 6.15.2 [Universal accessor|, page 209). You can modify an entry in a hashtable
in a vector in a list, for example. Associative list is a bit special, since you can’t distinguish
it from lists (thus ~ can’t be used), and it is mostly used in functional way. So we added a
special update procedure.

6.6.9 Extended pairs and pair attributes

Gauche has a special kind of pairs, called extended pairs. It behaves exactly the same as ordinary
pairs, but you can associate an attribute list to it. Gauche uses it to keep source-code location
information, for example.

Extended pairs don’t incur any overhead in accessing its car/cdr; set-car! and set-cdr!
has a little overhead (another reason you should avoid mutation!). Internally it takes up twice
of memory than the ordinary pairs.

Keep in mind that code using extended pairs is not easily ported to other Scheme implemen-
tations, although the feature can be emulated with a separate weak hash table.

extended-pair? obj [Function]
Returns #t iff obj is an extended pair.

extended-cons car cdr :optional attrs [Function]
Returns an extended pair of car and cdr. If an optional attrs argument is given, it must
be an alist, specifying initial pair attributes. By default, the pair attributes of the created
extended pair is empty.

extended-list obj obj2 ... [Function]
Creates and returns a list of obj obj2 ..., but its first pair is an extended pair. Note that
the subsequent pairs are ordinary pairs.

pair-attributes pair [Function]
Returns pair attributes of pair as an alist. You can pass an ordinary pair, in which case an
empty list is returned.

(pair-attributes (extended-cons ’a ’b ’((c . d) (e . £))))
= ((c . d) (e . £))

(pair-attributes (cons ’a ’b)
= 0O

pair-attribute-get pair key :optional default [Function]
Returns the value associated to the key key in the pair attributes of pair. Key can be any
Scheme object, and compared with eq?. If there’s no value associated with the given key,
default is returned if it is given, otherwise an error is signaled.

You can pass an ordinary pair as pair; in that case, it is treated with empty pair attributes.

Chapter 6: Core library 149

pair-attribute-set! pair key value [Function]
Adds a pair attribute of key with value to an extended pair pair. Key and value can be any
Scheme object. An error is thrown if pair is not an exteded pair.

This procedure does not mutate the exising alist, but rather makes a necessary copy. The
pair attributes are not supposed to be mutated frequently.

6.7 Symbols

<symbol> [Builtin Class]
A class for symbols.

| name | [Reader Syntax]
[R7RS] Denotes a symbol that has weird name, including the characters that are not usually
allowed in symbols. It can also include hex-escaped characters.

;3 A symbol with spaces in its name
>|this is a symbol| = |this is a symboll

;3 Unicode codepoint can be used following backslash-x escape,

;3 and terminated by semicolon.

> |\x3bb; | = A
If the interpreter is running in case-insensitive mode, this syntax can be used to include
uppercase characters in a symbol (see Section 2.4 [Case-sensitivity]|, page 14).

#:name [Reader Syntax]
Denotes wuninterned symbol. Uninterned symbols can be created by gensym or
string->uninterned-symbol.

Uninterned symbols are mainly for legacy macros to avoid variable conflicts. They are not
registered in the internal dictionary, so such symbols with the same name can’t be eq?.

(eq? ’#:foo ’#:foo) = #f

(eq? ’#:foo ’foo) = #f
When an S-expression including uninterned symbols are printed, the srfi-38 syntax is used to
indicate which uninterned symbol is the same (eq?) to which.

(letl s ’#:foo (list s s))

= prints (#0=#:foo #0#)

(let ((s ’#:foo) (t ’#:foo)) (list s t s t))
= prints (#0=#:foo #1=#:foo #0# #1#)

symbol? obj [Function]
[R7RS base| Returns true if and only if obj is a symbol.
(symbol? ’abc) = #t
(symbol? 0) = #f
(symbol? ’i) = #t
(symbol? ’-i) = #f
(symbol? ’|-il) = #t
symbol-interned? symbol [Function]

Returns #t if symbol is an interned symbol, #f if it is an uninterned symbol. An error is
signaled if symbol is not a symbol.

symbol=? abc ... [Function]
[R7RS base] Every argument must be a symbol. Returns #t iff every pair of arguments are
eq? to each other.

Chapter 6: Core library 150

symbol->string symbol [Function)]
[R7RS base] Returns the name of symbol in a string. Returned string is immutable.

(symbol->string ’foo) = foo

string->symbol string [Function]
[R7RS base|] Returns a symbol whose name is a string string. String may contain weird
characters.

(string->symbol "a") = a
(string->symbol "A") = A
(string->symbol "weird symbol name") = |weird symbol name

string->uninterned-symbol string [Function]
Like string->symbol, but the created symbol is uninterned.

(string->uninterned-symbol "a") = #:a

gensym :optional prefix [Function]
Returns a fresh, uninterned symbol. The returned symbol can never be eq? to other symbol
within the process. If prefix is given, which must be a string, it is used as a prefix of the
name of the generated symbol. It is mainly for the convenience of debugging.

symbol-sans-prefix symbol prefix [Function]
Both symbol and prefix must be symbols. If the name of prefix matches the beginning part
of the name of symbol, this procedure returns a symbol whose name is the name of symbol
without the matched prefix. Otherwise, it returns #£.

(symbol-sans-prefix ’foo:bar ’foo:) = bar
(symbol-sans-prefix ’foo:bar ’baz:) = #f

symbol-append interned? objs ... [Function]
symbol-append objs . .. [Function]
Returns a symbol with the name which is a concatenation of string representation of objs.

If the first argument is a boolean, it is recognized as the first form; the first argument specifies
whether the resulting symbol is interned or not.

Each other argument is converted to a string as follows: If it is a keyword, its name (with
the preceding :) is used. For all other objects, x->string is used. (The special treatment
of keyword is to keep the consistency before and after keyword-symbol integration. See
Section 6.8.1 [Keyword and symbol integration]|, page 152, for the details.)

This is upper-compatible to Bigloo’s same name procedure, which only allows symbols as the
arguments and the result is always interned.

(symbol-append ’ab ’cd) = abcd
(symbol-append ’ab ’:c 30) = ab:c30
(symbol-append #f ’g 100) = #:g100

6.8 Keywords

<keyword> [Builtin Class]
Keywords are a subtype of symbols that are automatically bound to itself. It is extensively
used in named arguments (keyword arguments), and keyword-value list.

See Section 4.3 [Making procedures], page 46, for how Gauche supports keyword arguments,
and let-keywords macro (Section 6.15.4 [Optional argument parsing], page 213) for parsing
keyword-value list manually.

Chapter 6: Core library 151

Keywords used to be a disjoint type from symbols. Since it isn’t conformant to R7RS, in
which symbols can begin with :, we’ve introduced two modes since 0.9.5; keywords can be a
disjoint type of its own, or it can be a subtype of symbols.

The behavior can be switched by environment variables. If the environment variable GAUCHE _
KEYWORD_DISJOINT is defined when gosh starts up, keywords and symbols are disjoint. Oth-
erwise, if the environment variable GAUCHE_KEYWORD_IS_SYMBOL is defined, keywords are a
subtype of symbols.

The default behavior when neither environment variables are defined has been switched since
0.9.8. GAUCHE_KEYWORD_DISJOINT was assumed in 0.9.7 and before, while GAUCHE_KEYWORD_
IS_SYMBOL is assumed in 0.9.8 and after.

Most typical code run in either mode, but there can be some code that behaves differently.
See Section 6.8.1 [Keyword and symbol integration|, page 152, for effect of the change.

In future we’ll stop supporting GAUCHE_KEYWORD_DISJOINT, so we recommend you to ensure
applications to run on the current default mode.

:name [Reader Syntax]
Read to a keyword whose name is :name.

keyword? obj [Function]
Returns #t if obj is a keyword.

make-keyword name [Function]
Returns a keyword whose name is name prepended by :. The name argument can be a string
or a symbol.

(make-keyword "foo") = :foo

(make-keyword ’foo) = :foo

keyword->string keyword [Function]
Returns the name (without the initial :) of the keyword keyword, in a string.

(keyword->string :foo) = "foo"

get-keyword key kv-list :optional fallback [Function]
A useful procedure to extract a value from key-value list. A key-value list kv-list must
contains even number of elements; the first, third, fifth ... elements are regarded as keys,
and the second, fourth, sixth ... elements are the values of the preceding keys.

This procedure looks for key from the keys, and if it finds one, it returns the corresponding
value. If there are more than one matching keys, the leftmost one is taken. If there is no
matching key, it returns fallback if provided, or signals an error otherwise.

It is an error if kv-list is not a proper, even-number element list.

Actually, ‘keywords’ in the keyword-value list and the key argument need not be a keyword—
it can be any Scheme object. Key comparison is done by eq?.
This procedure is taken from STk.
(get-keyword :y *(:x 1 :y 2 :z 3))
= 2
(get-keyword ’z (x 1 y 2 z 3))
= 3

(get-keyword :t *(:x 1 :y 2 :z 3))
= #<error>

(get-keyword :t ’(:x 1 :y 2 :z 3) #f)
= #f

Chapter 6: Core library 152

get-keyword* key kv-list :optional fallback [Macro]
Like get-keyword, but fallback is evaluated only if kv-list does not have key.

delete-keyword key kv-list [Function]
delete-keyword! key kv-list [Function]
Removes all the keys and values from kv-list for keys that are eq? to key.

delete-keyword doesn’t change kv-list, but the returned list may share the common tail of
it.

delete-keyword! doesn’t allocate, and may destructively changes kv-list. You still have to
use the returned value, for the original list may not be changed if its first key matches key.

If there’s no key that matches key, kv-Iist is returned.

(delete-keyword :y ’(:x 1 :y 2 :z 3 :y 4))
= (:x 1 :z 3)

delete-keywords keys kv-list [Function]

delete-keywords! keys kv-list [Function]
Similar to delete-keyword and delete-keyword!, but you can specify a list of objects in
keys; when a key in kv-list matches any of keys, the key and the following value is removed
from kv-Iist.

(delete-keywords ’(:x :y) ’(:x 1 :y 2 :z 3 :y 4))
= (:z 3)

6.8.1 Keyword and symbol integration

In older versions of Gauche, keywords are of disjoint type from symbols, and they are self-
evaluating objects. To maintain the compatibility, the current Gauche makes symbols that
begins with : automatically bound to itself.

On the surface it won’t make much difference; you can write a keyword :key, which evaluates
to itself; so you can pass and receive keyword arguments just as they used to be. If you use
:key as variables, however, e.g. (define :key 3), the value of :key in your module changes (it
won’t affect other modules, which refer to the binding of :key in gauche.keyword module).

However, there are several subtle points that do make difference, that breaks compatibility
of legacy code. We explain here how to change the code that works in both ways.

If you find a problem in new mode and want to get the old behavior until you change the
code, you can set the environment variable GAUCHE_KEYWORD_DISJOINT.

(symbol? :key) used to return #f, now returns #t

keyword? always returns #t on keywords, but if you need to switch behavior depending whether
an object is a symbol or a keyword, you should test keyword-ness first.

;5 behaved differently in 0.9.7 and before
(cond

[(symbol? x) (x-is-symbol)]

[(keyword? x) (x-is-keyword)])

;; works on all versions

(cond
[(keyword? x) (x-is-keyword)]
[(symbol? x) (x-is-symbol)])

Chapter 6: Core library 153

Literal keywords in pattern matching

In the old versions, when keywords appear in a pattern of util.match or syntax-rules, they
only matched to themselves. In the current version, such keywords in a pattern are treated as
pattern variables, since they are symbols.

;; In the old versions
(match ’(a b) [(:key z) (list :key z)] [_ "nope"l)
= '"nope"

;; In the current version

;3 :key is treated just as a pattern variable

(match ’(a b) [(:key z) (list :key z)] [_ "nope"l)
= (a b)

The same thing happens to the patterns in syntax-rules.
To make the code work in both versions, explicitly mark the keywords as literals.
e For match, quote the keywords you want to be treated as literals.
(match ’(a b) [(’:key z) (list :key z)] [_ "nope"])
= '"nope"
e For syntax-rules, list the keywords as literals.
(syntax-rules (:key)
[(_ :key z) (list :key z)]) ;etc.

As of Gauche 0.9.5, match warns if you have unquoted keywords in match patterns.

Displaying keywords
(display :key) used to print key (no colon), while it now prints :key.
You can use (display (keyword->string :key)) which prints key in both versions.

For R7RS code, quote them or import Gauche modules
Keywords (symbols beginning with :) are automatically bound to itself in the gauche.keyword
module.

Gauche code inherits the gauche module by default, which inherits keyword, so you can see
the binding of the keyword by default.

In R7RS code, however, you don’t inherit gauche, so symbols beginning with : are just
ordinary symbols by default. Usually you do (import (gauche base)) to use Gauche built-ins,
and that makes binding of gauche.keyword available in your code, too (since gauche.base
inherits gauche.keyword). But keep this in mind just in case you want to handle keywords in
your R7RS code separate from Gauche procedures—you have to either say (import (gauche
keyword)) to get just the self-bound keywords, or quote them.

(import (scheme base))
:foo = ERROR: unbound variable: :foo
(import (gauche base))

:foo = :foo

In the following example, the R7RS library foo imports only copy-port from (gauche base);
in that case, you have to import (gauche keyword) separately in order to use :size keyword
without quoting. (Or add :size explicitly in the imported symbol list of (gauche base).)

(define-library (foo)

Chapter 6: Core library 154

(import (scheme base)
(only (gauche base) copy-port)
(gauche keyword))

(export cat)

(begin
(define (cat)
(copy-port (current-input-port)
(current-output-port)
:size 4096))))

6.9 Characters

<char> [Builtin Class]
#\charname [Reader Syntax]
[R7RS+] Denotes a literal character.

When the reader reads #\, it fetches a subsequent character. If it is one of () [1{}" \I;#,
this is a character literal of itself. Otherwise, the reader reads subsequent characters until
it sees a non word-constituent character. If only one character is read, it is the character.
Otherwise, the reader matches the read characters with predefined character names. If it
doesn’t match any, an error is signaled.

The following character names are recognized. These character names are case insensitive.
space Whitespace (ASCIT #x20)

newline, nl, 1f

Newline (ASCII #x0a)

return, cr

Carriage return (ASCII #x0d)
tab, ht Horizontal tab (ASCII #x09)
page Form feed (ASCII #x0c)
alarm Bell (ASCII #x07)

backspace
Backspace (ASCII #x08)

escape, esc

Escape (ASCII #x1b)

delete, del
Delete (ASCII #x7f)

null NUL character (ASCIT #x00)

xN A character whose Unicode codepoint is the integer N, when N is a hexadecimal
integer. This is R7RS lexical syntax. (See the compatibility note below).

ul A character whose Unicode codepoint is the integer N, where N is 4-digit or
8-digit hexadecimal number.

This is legacy Gauche lexical syntax. Use \xN syntax for the new code. (See the
compatibility note below).

#\newline = #\newline ; newline character
#\x0a = #\newline ; ditto

Chapter 6: Core library 155

#\x41 = #\A ; ASCII letter 'A’
#\x3042 = ; Hiragana letter A
#\x2a6b2 = ; JISX0213 Kanji 2-94-86

Compatibility note: Before 0.9.4, \xNN syntax uses Gauche’s internal character encoding as
opposed to Unicode codepoint. Both are the same if Gauche is compiled with internal encoding
utf-8 or none (if it’s none, only characters up to U+00ff is supported and in this range the
characters are the same as Unicode characters.) If Gauche is compiled with encoding euc-jp or
sjis, the meaning of \xNN beyond ASCII range differs from 0.9.3.3 or before.

If you set the reader mode to legacy (see Section 6.21.7.2 [Reader lexical mode|, page 253),
#\xNN is read as before, keeping the compatibility (but it isn’t compatible to R7RS). Alterna-
tively, you can use #\ulNNNN, or a character itself, to make the code work in both new and old
versions of Gauche.

char? obj [Function]
[R7RS base] Returns #t if obj is a character, #f otherwise.

char=? charl char2 char3 ... [Function]

char<? charl char2 char3 . .. [Function]

char<=7 charl char2 char3 . .. [Function]

char>? charl char2 char3 ... [Function]

char>=7? charl char2 char3 . .. [Function]
[R7RS base] Compares characters. Character comparison is done in internal character en-
coding.

char-ci=? charl char2 char3 ... [Function]
char-ci<? charl char2 char3 ... [Function]
char-ci<=7 charl char2 char3 ... [Function]
char-ci>? charl char2 char3 ... [Function]
char-ci>=? charl char2 char3 ... [Function]
[R7TRS char] Compares characters in case-insensitive way. The comparison is done in the
internal character code of the foldcase of the each character; see char-foldcase below.

In R7RS, these procedures are in the (scheme char) library.

char-alphabetic? char Function
char-numeric? char Function
char-whitespace? char Function

char-lower-case? char

char-title-case? char unction
[R7RS char][SRFI-129] Returns true if a character char is an alphabetic character (Unicode
character category Lu, L1, Lt, Lm, Lo, N1), a numeric character (Unicode character category
Nd), a whitespace character, (Unicode character category Zs, Zp, Z1), an upper case character
(Unicode character category Lu), or a lower case character (Unicode character category L1),
respectively.

[]
oo
char-upper-case? char [Functlon}
[]
[F]

In R7RS, these procedures except char-title-case? are in the (scheme char) library, while
char-title-case? is defined in SRFI-129.

char-general-category char [Function]
[R6RS] Returns one of the following symbols, representing the Unicode general category of
char.

Cc Other, Control
Ccf Other, Format

Chapter 6: Core library

Cn
Co
Cs
L1
Lm
Lo
Lt
Lu
Mc
Me
Mn
Nd
N1
No
Pc
Pd
Pe
Pf
Pi
Po
Ps
Sc
Sk
Sm
So
Z1
Zp
Zs

Other, Not Assigned
Other, Private Use
Other, Surrogate

Letter, Lowercase

Letter, Modifier

Letter, Other

Letter, Titlecase

Letter, Uppercase

Mark, Spacing Combining
Mark, Enclosing

Mark, Nonspacing
Number, Decimal Digit
Number, Letter

Number, Other
Punctuation, Connector
Punctuation, Dash
Punctuation, Close
Punctuation, Final quote
Punctuation, Initial quote
Punctuation, Other
Punctuation, Open
Symbol, Currency
Symbol, Modifier
Symbol, Math

Symbol, Other
Separator, Line
Separator, Paragraph
Separator, Space

156

If Gauche is compiled with euc-jp or shift_jis encoding, there are characters that don’t have
corresponding Unicode codepoint (each of them are represented by one unicode character
plus one unicode modifier character). A provisional category is assigned to those characters.
If future versions of Unicode incorporates these characters, the category may be reassigned.

SJIS
82F5
82F6
82F7
82F8
82F9
8397
8398
8399
839A
839B
839C
839D
839E
83F6
8663
8667
8668
8669

EUC Cat Unicode

A4F7 Lo U+304B U+309A (Semi-voiced Hiragana KA)
A4F8 Lo U+304D U+309A (Semi-voiced Hiragana KI)
A4F9 Lo U+304F U+309A (Semi-voiced Hiragana KU)
A4FA Lo U+3051 U+309A (Semi-voiced Hiragana KE)
A4FB Lo U+3053 U+309A (Semi-voiced Hiragana KO)
ASF7 Lo U+30AB U+309A (Semi-voiced Katakana KA)
ASF8 Lo U+30AD U+309A (Semi-voiced Katakana KI)
ASF9 Lo U+30AF U+309A (Semi-voiced Katakana KU)
ASFA Lo U+30B1 U+309A (Semi-voiced Katakana KE)
ASFB Lo U+30B3 U+309A (Semi-voiced Katakana KO)
ASFC Lo U+30BB U+309A (Semi-voiced Katakana SE)
ASFD Lo U+30C4 U+309A (Semi-voiced Katakana TSU)
ASFE Lo U+30C8 U+309A (Semi-voiced Katakana TO)
A6F8 Lo U+31F7 U+309A (Semi-voiced small Katakana FU)
ABC4 L1 U+OOE6 U+0300 (Accented latin small ae)

ABC8 L1 U+0254 U+0300 (Accented latin small open o)
ABC9 L1 U+0254 U+0301 (Accented latin small open o)
ABCA L1 U+028C U+0300 (Accented latin small turned v)

Chapter 6: Core library 157

866A ABCB L1 U+028C U+0301 (Accented latin small turned v)
866B ABCC L1 U+0259 U+0300 (Accented latin small schwa)

866C ABCD L1 U+0259 U+0301 (Accented latin small schwa)

866D ABCE L1 U+025A U+0300 (Accented latin small schwa w/hook)
866E ABCF L1 U+025A U+0301 (Accented latin small schwa w/hook)
8685 ABES5 Sk U+02E9 U+02E5

8686 ABE6 Sk U+02E5 U+02E9

char->integer char [Function]

integer->char n [Function]
[R7TRS base| char->integer returns an exact integer that represents internal encoding of
the character char. integer->char returns a character whose internal encoding is an exact
integer n. The following expression is always true for valid character char:

(eq? char (integer->char (char->integer char)))

Note: R7RS defines these procedures to deal with Unicode codepoints. Gauche complies
it when compiled with utf-8 or none internal encoding (for the latter, only characters up
to U+00ff are supported). If Gauche is compiled with euc-jp or sjis internal encoding,
you need to use char->ucs/ucs->char below to convert between Unicode codepoints and
characters.

The result is undefined if you pass n to integer->char that doesn’t have a corresponding
character.

char->ucs char [Function]

ucs->char n [Function]
Converts a character char to integer UCS codepoint, and integer UCS codepoint n to a
character, respectively.

If Gauche is compiled with UTF-8 encoding, these procedures are the same as char->integer
and integer->char.

When Gauche’s internal encoding differs from UTF-8, these procedures implicitly loads
gauche. charconv module to convert internal character code to UCS or vice versa (see
Section 9.4 [Character code conversion|, page 367). If char doesn’t have corresponding UCS
codepoint, char->ucs returns #f. If UCS codepoint n can’t be represented in the internal
character encoding, ucs->char returns #f, unless the conversion routine provides a substitu-
tion character.

char-upcase char [Function]
char-downcase char [Function]
char-titlecase char [Function]
char-foldcase char [Function]

[R7RS char][SRFI-129] Returns the upper case, lower case, title case and folded case of char,
respectively.

The mapping is done according to Unicode-defined character-by-character case mapping
whenever possible. If the native encoding doesn’t support the mapped character defined
in Unicode, the operation becomes no-op. If the native encoding is 'none’, we treat the char-
acters as if they are Latin-1 (ISO-8859-1) characters. So, upcasing Latin-1 character small y
with diaresis (U+00ff) maps to capital y with diaeresis (U+0178) if the internal encoding is
utf-8, but it is no-op if the internal encoding is none.

R7RS defines char-upcase, char-downcase, and char-foldcase in the (scheme char) li-
brary, while char-titlecase is defined in SRFI-129. R6RS defines all of them.

The character-by-character case mapping doesn’t consider a character that may map to more
than one characters; a notable example is eszett (latin small letter sharp S, U+00df), which

Chapter 6: Core library 158

is is mapped to two capital S’s in string context, but char-upcase #\8 returns #\8. To get
a full mapping, use string-upcase etc. in gauche.unicode module (see Section 9.36.3 [Full
string case conversion], page 517).

digit->integer char :optional (radix 10) (extended-range? #f) [Function]
If given character char is a valid digit character in radix radix number, the corresponding
integer is returned. Otherwise #£f is returned.

(digit->integer #\4) = 4
(digit->integer #\e 16) = 14
(digit->integer #\9 8) = #f

If the optional extended-range? argument is true, this procedure recognizes not only ASCII
digits, but also all characters with Nd general category—such as FULLWIDTH DIGIT ZERO
to NINE (U+{f10 - U+{f19).

R7RS has digit-value, which is equivalent to (digit->integer char 10 #t).

Note: CommonLisp has a similar function in rather confusing name, digit-char-p.

integer->digit integer :optional (radix 10) (basecharl #\0) (basechar2 [Function]
7#\a)

Reverse operation of digit->integer. Returns a character that represents the number
integer in the radix radix system. If integer is out of the valid range, #f is returned.

(integer->digit 13 16) = #\d
(integer->digit 10) = #f

The optional basecharl argument specifies the character that stands for zero; by default,
it’s #\0. You can give alternative character, for example, U+0660 (ARABIC-INDIC DIGIT
ZERO) to convert an integer to a arabic-indic digit character.

Another optional basechar2 argument is used for integers over 10. The default value is #\a.
You can pass #\A to get upper-case hex digits, for example.

Note: CommonLisp’s digit-char.
gauche-character-encoding [Function]

Returns a symbol designates the native character encoding, selected at the compile time. The
possible return values are those:

euc—jp EUC-JP

utf-8 UTF-8
sjis Shift JIS
none No multibyte character support (8-bit fixed-length character).

To switch code at compile time according to the internal encoding, you can use feature
identifiers gauche. ces.*—see Section 3.5 [Platform-dependent features], page 32.

supported-character-encodings [Function]
Returns a list of string names of character encoding schemes that are supported in the native
multibyte encoding scheme.

Chapter 6: Core library 159

6.10 Character Sets

<char-set> [Builtin Class]
Character set class. Character set object represents a set of characters. Gauche provides
built-in support of character set creation and a predicate that tests whether a character is in
the set or not.

The class implements the collection protocol (see Section 9.5 [Collection framework],
page 372), so that the standard collection methods provided in the gauche.collection
module can be used.

An instance of <char-set> is applicable to a character, and works as a membership predicate;
see char-set-contains? below.

Further operations, such as set algebra, is defined in SRFI-14 module (see Section 10.3.6
[R7RS character sets|, page 576).

6.10.1 Character set literals

#[char-set-spec] [Reader Syntax]
You can write a literal character set in this syntax. char-set-spec is a sequence of characters
to be included in the set. You can include the following special sequences:

xX-y Characters between x and y, inclusive. x must be smaller than y in the internal
encoding.

If char-set-spec begins with caret, the actual character set is a complement of
what the rest of char-set-spec indicates.

\xN; A character whose Unicode codepoint is a hexadecimal number N.

\uXXXX

\UXXXXXXXX
This is a legacy Gauche syntax, for a unicode character whose Unicode codepoint
is represented by 4-digit and 8-digit hexadecimal numbers, respectively.

\s Whitespace characters (space, newline, tab, form feed, vertical tab, carriage re-
turn). Members of char-set:ascii-whitespace.

\S Complement of whitespace characters.

\d Decimal digit characters. Members of char-set:ascii-digits.

\D Complement of decimal digit characters.

\w Word constituent characters (#[A-Za-z0-9_1). Members of char-set:ascii-
word.

\W Complement of word constituent characters.

\\ A backslash character.

\- A minus character.

\" A caret character.

[:alnum:]

Character set a la POSIX. See the table below for the complete list of recognized
character set names. The set name must be in all lower cases. This notation only
includes characters in ASCII range.

[:"alnum:] ...
Complement set of [:alnum:] etc.

Chapter 6: Core library 160

[:ALNUM:] ...

Gauche’s extension of character set a la POSIX; the name must be all in upper
cases, and includes full Unicode range. See the table below for the recognized
names.

[:"ALNUM:] ..

Complement set of [:ALNUM:] etc.

Here’s the list of POSIX-style character class names:

:alpha:
:alnum:
:blank:
:cntrl:

:digit:
:graph:
:lower:
:print:
‘punct:
:space:
:upper:
:word:
:xdigit:
rascii:
:ALPHA:
:ALNUM:
:BLANK:
:CNTRL:
:DIGIT:
:GRAPH:

:LOWER:
:PRINT:
:PUNCT:
:SPACE:

:TITLE:
:UPPER:
:WORD:
:XDIGIT:

ASCII alphabets. char-set:ascii-letter, #[A-Za-z]

ASCII alphabets and digits. char-set:ascii-letter+digits, #[0-9A-Za-z].
ASCII blanks. char-set:ascii-blank, tab and space.

ASCII control characters. char-set:ascii-control, U+0000 to U+001f and
U+007f.

ASCII digits. char-set:ascii-digit, #[0-9].

ASCII graphic characters. char-set:ascii-graphic

ASCII lower-case alphabets. char-set:ascii-lower-case, #[a-z].

ASCII printing characters. char-set:ascii-printing.

ASCII punctuation characters. char-set:ascii-punctuation.

ASCII whitespaces. char-set:ascii-whitespace.

ASCII upper-case characters. char-set:ascii-upper-case, #[A-Z].

ASCII word characters (not POSIX). char-set:ascii-word, #[0-9A-Za-z_].
Hexadecimal digits. char-set:hex-digit, #[0-9a-fA-F].

ASCII characters (not POSIX). char-set:ascii.

Unicode letters (category L¥). char-set:letter.

Unicode letters and digits. char-set:letter+digits

Unicode blanks (tab and category Zs). char-set:blank.

Unicode control characters (category Cc). char-set:iso-control.

Unicode digits (category Nd). char-set:digit.

Unicode graphic characters (letter, digits, punctuation, symbol, and category
N1 and No). char-set:graphic.

Unicode lower-case letters (category L1). char-set:lower-case, #[a-z].
Unicode printing characters (graphic and whitespace). char-set:printing.
Unicode punctuation characters (category P*). char-set:punctuation.
Unicode whitespaces (tab, LF, vertical tab, FF, CR, and category Z*).
char-set:whitespace.

Unicode titlecase letters (category Lt). char-set:title-case.

Unicode upper-case letters (category Lu). char-set:upper-case, #[A-Z].
Unicode word characters. char-set:word.
Hexadecimal digits (same as :xdigit:).

Here are some examples:

#[aeiou] ; a character set consists of vowels
#[a-zA-Z] ; alphabet

#[[:alpha:]1] ; alphabet (using POSIX notation)
#\\\-] ; backslash and minus

#[1 ; empty charset

#[\x0d;\x0a;\x3000;] ; carriage return, newline, and ideographic space

Literal character sets are immutable, as other literal data. An error is signalled when you
attempt to modify an immutable character set.

Note for the compatibility: We used to recognize a syntax \xNN (two-digit hexadecimal
number, without semicolon terminator) as a character; for example, #[\x0d\x0a] as a return

and a newline.

We still support it when we don’t see the terminating semicolon, for the

Chapter 6: Core library 161

compatibility. There are ambiguous cases: #[\x0a;] means only a newline in the current
syntax, but a newline and a semicolon in legacy syntax.

Setting the reader mode to legacy restores the old behavior. Setting the reader mode to
warn-legacy makes it work like the default behavior, but prints warning when it finds legacy
syntax. See Section 6.21.7.2 [Reader lexical mode], page 253, for the details.

To write code that can work both in new and old syntax, use \u escape.

6.10.2 Predefined character sets

We provide a bunch of predefined character sets, including the ones defined in R7RS charset
library (see Section 10.3.6 [R7RS character sets|, page 576). Those character sets are immutable.

char-set:letter [Variable]
[RTRS charset] Letters (Unicode general category Lu, L1, Lt, Lm and Lo).

char-set:lower-case [Variable]
char-set:upper-case [Variable]
char-set:title-case [Variable]

[R7TRS charset] Lower case, upper case and title case letters (Unicode general category L1,
Lu and Lt, respectively).

char-set:digit [Variable]
[R7RS charset] Digit characters (Unicode general category Nd). Note that this contains many
more characters than ASCII 0 to 9. If you need #[0-9], use char-set:ascii-digit.

char-set:hex-digit [Variable]
[R7RS charset] Digit characters used for hexadecimal, i.e. #[0-9A-Fa-f]. This does not
contain other Unicode digit characters, for it isn’t practical to mix non-ascii digit characters
with hexadecimal notation.

char-set:letter+digit [Variable]
[R7RS charset] Union of char-set:letter and char-set:digit.

char-set:graphic [Variable]
[R7RS charset] Characters that has some glyph. Union of letters, numbers, punctuations and
symbols.

char-set:printing [Variable]
[R7RS charset] Union of char-set:graphic and char-set:whitespace.

char-set:whitespace [Variable]

char-set:blank [Variable]
[R7TRS charset] Whitespace and blank characters; char-set:whitespace includes #\tab,
#\newline, #\uOOOB (vertical tab), #\page, #\return, and all characters in general category
Zs, Z1, Zp, while char-set:blank includes #\tab and all characters in general category Zs.
Note that char-set:whitespace is the same set of characters that Scheme reader treats as
whitespace characters.

char-set:iso-control [Variable]
[R7RS charset] Control characters (Unicode general category Cc).

char-set:punctuation [Variable]
[R7RS charset] Punctuation characters (Unicode general category Pc, Pd, Ps, Pe, Pi, Pf and
Po).

char-set:symbol [Variable]
[R7RS charset] Symbol characters (Unicode general category Sm, Sc, Sk and So).

Chapter 6: Core library 162

char-set:ascii [Variable]

[R7RS charset] Contains all ASCII characters (U+0000 to U+007f).

char-set:empty [Variable]

[R7RS charset] An empty character set.

char-set:full [Variable]

[R7RS charset] A character set that includes all characters.

char-set:word [Variable]

A word constituent characters. In the current version, it is equivalent to char-set:ascii-
word (#[0-9A-Za-z_]) but in future versions we may extend this to other Unicode characters.
If you intend to mean ASCII-only words, use char-set:ascii-word.

char-set:ascii-letter [Variable]
char-set:ascii-lower-case [Variable]
char-set:ascii-upper-case [Variable]
char-set:ascii-digit [Variable]
char-set:ascii-letter+digit [Variable]
char-set:ascii-graphic [Variable]
char-set:ascii-printing [Variable]
char-set:ascii-whitespace [Variable]
char-set:ascii-blank [Variable]
char-set:ascii-control [Variable]
char-set:ascii-punctuation [Variable]
char-set:ascii-symbol [Variable]
char-set:ascii-word [Variable]

These are intersection of char-set:ascii and the corresponding char set without ascii-.
(char-set:ascii-control corresponds to char-set:iso-control).

The \d, \s and \w notation in the char-set literal and regexp literal corresponds to
char-set:ascii-digit, char-set:ascii-whitespace, and char-set:ascii-word, respec-
tively (not the Unicode set).

The POSIX character class notation, such as [:alpha:] in char-set literal and regexp literal,
refers to these ASCII-only charsets.

Note: We don’t have char-set:ascii-title-case and char-set:ascii-hex-digit.
There’s no titlecase letter in ASCII range. And char-set:hex-digit is limited to ASCII

by definition.

char-set:Lu [Variable]
char-set:L1 [Variable]
char-set:Lt [Variable]
char-set:Lm [Variable]
char-set:Lo [Variable]
char-set:Mn [Variable]
char-set:Mc [Variable]
char-set:Me [Variable]
char-set:Nd [Variable]
char-set:N1 [Variable]
char-set:No [Variable]
char-set:Pc [Variable]
char-set:Pd [Variable]
char-set:Ps [Variable]
char-set:Pe [Variable]

Chapter 6: Core library 163

char-set:Pi Variable
char-set:Pf Variable
char-set:Po Variable
char-set:Sm Variable
char-set:Sc Variable
char-set:Sk Variable

[
[
[
[
%
char-set:So [Variable
[
[
[
[
[
[
[

]
]
]
]
]
]
]
]
Variable]
]
]
]
]
]
]
1

char-set:Zs Variable
char-set:Z1
char-set:Zp Variable
char-set:Cc Variable
char-set:Cf Variable
char-set:Cs Variable
char-set:Co Variable
char-set:Cn [Variable
Each character set contains the corresponding Unicode characters with the given genera

category; e.g. char-set:Lu contains all characters of the general category Lu.

char-set:L [Variable]
char-set:LC [Variable]
char-set:M [Variable]
char-set:N [Variable]
char-set:P [Variable]
char-set:S [Variable]
char-set:Z [Variable]
char-set:C [Variable]

Each character set contains the Unicode characters with the general category starting with the
letter; e.g. char-set:L is union of char-set:Lu, char-set:Ll, char-set:Lt, char-set:Lm
and char-set:Lo.

char-set:LC is for cased-letters, the union of char-set:Lt, char-set:L1, char-set:Lu.

6.10.3 Character set operations

See also Section 10.3.6 [R7RS character sets|, page 576, for the comprehensive character set
operations.

char-set? obj [Function]
[R7RS charset] Returns true if and only if obj is a character set object.

char-set-immutable? char-set [Function]
Returns #t if char-set is an immutable char-set, #£ if it’s a mutable char-set.

char-set-contains? char-set char [Function]
[R7RS charset] Returns true if and only if a character set object char-set contains a character
char.
(char-set-contains? #[a-z] #\y) = #t
(char-set-contains? #[a-z] #\3) = #f

(char-set-contains? #[“ABC] #\A) = #f
(char-set-contains? #["ABC] #\D) = #t

char-set char [Generic application]
A char-set object can be applied to a character, and it works just like (char-set-contains?
char-set char).

Chapter 6: Core library 164

(#[a-z] #\a) = #t
(#[a—z] #\A) = #f

(use gauche.collection)
(filter #[a-z] "CharSet") = (#\h #\a #\r #\e #\t)

char-set char ... [Function]
[R7RS charset] Creates a character set that contains char

(char-set #\a #\b #\c) = #[a-c]

char-set-size char-set [Function]
[R7RS charset] Returns a number of characters in the given charset.

gosh> (char-set-size #[])

0

gosh> (char-set-size #[[:alnum:]])
62

char-set-copy char-set [Function]
[R7RS charset] Copies a character set char-set.

char-set-complement char-set [Function]

char-set-complement! char-set [Function]
[R7RS charset] Returns a complement set of char-set. The former always returns a new set,
while the latter may reuse the given charset.

6.11 Strings

<string> [Builtin Class]
A string class.

It should be emphasized that Gauche’s internal string object, string body, is immutable. To
comply R7RS in which strings are mutable, a Scheme-level string object is an indirect pointer
to a string body. Mutating a string means that Gauche creates a new immutable string body
that reflects the changes, then swap the pointer in the Scheme-level string object.

This may affect some assumptions on the cost of string operations.

e Copying string is O(1), no matter how long the string is, since the same string body is
shared.

e Taking substring usually is also O(1), for the resulting string shares the substring of the
original string body. Gauche may copy a part of the string for better memory management,
but the visible cost should stay pretty close to O(1). (However, note that accessing to a
specific point by index within the original string may cost O(N) because of multibyte string;
which is a different story).

e On the other hand, mutating a string cost O(N) where N is the length of string, even for
replacing a character.

Gauche does not attempt to make string mutation faster; (string-set! s k c¢) is exactly as
slow as to take two substrings, before and after of k-th character, and concatenate them with
a single-character string inbetween. So, just avoid string mutations; we believe it’s a better
practice. See also Section 6.11.3 [String constructors|, page 166.

R7RS string operations are very minimal. Gauche supports some extra built-in operations,
and also a rich string library defined in SRFI-13. See Section 11.5 [String library], page 652, for
details about SRFI-13.

Chapter 6: Core library 165

6.11.1 String syntax

Lt [Reader Syntax]
[R7RS+] Denotes a literal string. Inside the double quotes, the following backslash escape
sequences are recognized.

\" [R7RS] Double-quote character

\\ [R7RS] Backslash character

\n [R7RS] Newline character (ASCII 0x0a).
\r [R7RS] Return character (ASCII 0x0d).

\f Form-feed character (ASCII 0x0c).

\t [R7RS] Tab character (ASCII 0x09)

\a [R7RS] Alarm character (ASCII 0x07).

\b [R7RS] Backspace character (ASCII 0x08).
\0 ASCII NUL character (ASCII 0x00).

\<whitespace>*<newline><whitespace>*
[R7RS] Ignored. This can be used to break a long string literal for readability.
This escape sequence is introduced in R6RS.

\xN; [R7RS] A character whose Unicode codepoint is represented by hexadecimal num-
ber N, which is any number of hexadecimal digits. (See the compatibility notes
below.)

\uNNNN A character whose UCS2 code is represented by four-digit hexadecimal number
NNNN.

\UNNNNNNNN
A character whose UCS4 code is represented by eight-digit hexadecimal number
NNNNNNNN.

The following code is an example of backslash-newline escape sequence:
(define *message* "\
This is a long message \
in a literal string.")

messagex
= "This is a long message in a literal string."
Note the whitespace just after ‘message’. Since any whitespaces before ‘in’ is eaten by the
reader, you have to put a whitespace between ‘message’ and the following backslash. If you
want to include an actual newline character in a string, and any indentation after it, you can
put '\n’ in the next line like this:
(define *message/newline* "\
This is a long message, \
\n with a line break.")
Note for the compatibility: We used to recognize a syntax \xNN (two-digit hexadecimal
number, without semicolon terminator) as a character in a string; for example, "\x0d\x0a"
was the same as "\r\n". We still support it when we don’t see the terminating semicolon, for
the compatibility. There are ambiguous cases: "\0x0a;" means "\n" in the current syntax,
while "\n;" in the legacy syntax.
Setting the reader mode to legacy restores the old behavior. Setting the reader mode to
warn-legacy makes it work like the default behavior, but prints warning when it finds legacy
syntax. See Section 6.21.7.2 [Reader lexical mode], page 253, for the details.

Chapter 6: Core library 166

6.11.2 String predicates

string? obj [Function]
[R7RS base| Returns #t if obj is a string, #f otherwise.

string-immutable? obj [Function]
Returns #t if obj is an immutable string, #f otherwise

String literals, and the strings returned from certain procedures such as symbol->string are
immutable. To ensure you get an immutable string in a program, you can use string-copy-
immutable.

string-incomplete? obj [Function]
Returns #t if obj is an incomplete string, #f otherwise

6.11.3 String constructors

make-string k :optional char [Function]
[R7RS base] Returns a string of length k. If optional char is given, the new string is filled
with it. Otherwise, the string is filled with a whitespace. The result string is always complete.

(make-string 5 #\x) = "xxxxx"

Note that the algorithm to allocate a string by make-string and then fills it one character
at a time is extremely inefficient in Gauche, and should be avoided.

In Gauche, a string is simply a pointer to an immutable string content. If you mutate a
string by, e.g. string-set!, Gauche allocates whole new immutable string content, copies
the original content with modification, then swap the pointer of the original string. It is no
more efficient than making a new copy.

You can use an output string port for a string construction (see Section 6.21.5 [String ports],
page 248). Even creating a list of characters and using list->string is faster than using
make-string and string-set!.

make-byte-string k :optional byte [Function]
Creates and returns an incomplete string o size k. If byte is given, which must be an exact
integer, and its lower 8 bits are used to initialize every byte in the created string.

string char ... [Function]
[R7RS base| Returns a string consisted by char

x->string obj [Generic Function)]
A generic coercion function. Returns a string representation of obj. The default methods
are defined as follows: strings are returned as is, numbers are converted by number->string,
symbols are converted by symbol->string, and other objects are converted by display.

Other class may provide a method to customize the behavior.

6.11.4 String interpolation

The term "string interpolation" is used in various scripting languages such as Perl and Python
to refer to the feature to embed expressions in a string literal, which are evaluated and then
their results are inserted into the string literal at run time.

Scheme doesn’t define such a feature, but Gauche implements it as a reader macro.

#string-literal [Reader Syntax]
Evaluates to a string. If string-literal contains the character sequence ~expr, where expr is
a valid external representation of a Scheme expression, expr is evaluated and its result is

Chapter 6: Core library 167

inserted in the original place (by using x->string, see Section 6.11.3 [String constructors|,
page 166).

The tilde and the following expression must be adjacent (without containing any whitespace
characters), or it is not recognized as a special sequence.

To include a tilde itself immediately followed by non-delimiting character, use ~~.
Other characters in the string-literal are copied as is.

If you use a variable as expr and need to delimit it from the subsequent string, you can use
the symbol escape syntax using ‘|’ character, as shown in the last two examples below.

#"This is Gauche, version ~(gauche-version)."
= "This is Gauche, version 0.9.11."

#"Date: ~(sys-strftime \"%Y/%m/%d\" (sys-localtime (sys-time)))"
= "Date: 2002/02/18"

(let ((a "AAA™)

(b "BBB"))
#"xxx “a “b zzz")
= "xxx AAA BBB zzz"

#"1237~456""789"
= "12374567789"

(let ((n 7)) #"R”In|RS")
= "R7RS"

(let ((x "bar")) #"foo"|x|.")
= "foobar"

In fact, the reader expands this syntax into a macro call, which is then expanded into a call
of string-append as follows:

#"This is Gauche, version ~(gauche-version)."

(string-interpolate* ("This is Gauche, version "
g P
(gauche-version)

ll.ll))
;; then, it expands to...

(string-append "This is Gauche, version "
(x->string (gauche-version))
ll.ll)
(NB: The exact spec of string-interpolate* might change in future, so do not rely on the
current behavior.)

Since the #"..." syntax is equivalent to a macro call of string-interpolate*, which is
provided in the Gauche module, it must be visible from where you use the interpolation
syntax. When you write Gauche code, typically you implicitly inherit the Gauche module
so you don’t need to worry; however, if you start from R7RS code, make sure you import
string-interpolatex* (by (import (gauche base)), for example) whenever you use string
interpolation syntax. Also be careful not to shadow string-interpolatex* locally.

Chapter 6: Core library 168

#‘string-literal [Reader Syntax]
This is the old style of string-interpolation. It is still recognized, but discouraged for the new
code.

Inside string-literal, you can use ,expr (instead of ~expr) to evaluate expr. If comma isn’t
immediately followed by a character starting an expression, it loses special meaning.

#‘"This is Gauche, version , (gauche-version)"

Rationale of the syntax: There are wide variation of string interpolation syntax among script-
ing languages. They are usually linked with other syntax of the language (e.g. prefixing $ to
mark evaluating place is in sync with variable reference syntax in some languages).

The old style of string interpolation syntax was taken from quasiquote syntax, because those
two are conceptually similar operations (see Section 4.9 [Quasiquotation], page 63). However,
since comma character is frequently used in string literals, it was rather awkward.

We decided that tilde is more suitable as the unquote character for the following reasons.

e Traditionally, Lisp’s string formatter format uses ~ to introduce format directives (see
Section 6.21.8.4 [Formatting output], page 259). Lispers are used to scan ~’s in a string as
variable portions.

e Gauche’s ~ is a universal accessor, and the operator has a nuance of “taking something out
of it” (see Section 6.15.2 [Universal accessor], page 209).

e Clojure, a new Lisp dialect, adopted ~ as the unquote character in the quasiquote syntax,
instead of commas.

Note that Scheme allows wider range of characters for valid identifier names than usual
scripting languages. Consequently, you will almost always need to use ‘|’ delimiters when you
interpolate the value of a variable. For example, while you can write "$year/$month/$day
$hour:$minutes:$seconds" in Perl, you should write #"~|year|/~|month|/~day
“lhour|:~ Iminutes|:“seconds". It may be better always to delimit direct variable references
in this syntax to avoid confusion.

6.11.5 String cursors

String cursors are opaque objects that point into strings, similar to indexes. Cursors however are
more efficient. For example, to get a character with string-ref using an index on a multibyte
string, Gauche needs to iterate from the beginning of the string until that position, or 0(n).
Using cursors you can access in 0(1) (for singlebyte (ASCII) strings or an indexed string, Gauche
does it in 0(1) even with index. See Section 6.11.6 [String indexing], page 170, for the details
of indexed string.)

For a string of length n, there can be n+1 cursors. The last cursor at the end of the string
does not point to any valid character, it’s usually used to determine if nothing is found.

A string cursor is associated with a specific string and should not be used with another
string. A string cursor also becomes invalid when the associated string is modified. Accessing
an invalid cursor does not always fail though. Running gosh with -fsafe-string-cursors
could help catch these issues, with some performance overhead. See Section 3.1 [Invoking Gosh],
page 18.

Most of the time, string cursors aren’t heap-allocated. It is only allocated in heap either (1)
when it points at a huge byte index, or (2) when you use -fsafe-string-cursors to enable
extra run-time check.

The threashold of byte index to cause a string cursor to be heap-allocated is 2756 on 64bit
systems, and 2724 on 32bit systems, in the current implementation. On 64bit systems you will
never hit the threashold practically. On 32bit systems you may, if you have a huge string, but

Chapter 6: Core library 169

you may want to consider using other data structure rather than keeping such data in one string
object.

Most procedures that take indexes in Gauche can also take cursors. Relying on this though
is unportable. For example, the substring procedure in RnRS standards does not mention
anything about cursors even though the Gauche version accepts cursors. For portable programs,
you should only use cursors on procedures from srfi-130 module (see Section 11.27 [Cursor-based
string library|, page 697).

<string-cursor> [Builtin Class]
Represents a cursor. When printed out, you’ll see the byte offset from the beginning of the
string, not the character index.

(string-index->cursor "" 2)
= #<string-cursor 6>

string-cursor? obj [Function]
[SRFI-130] Returns #t if obj is a string cursor, #f otherwise.

string-cursor-start str [Function]
[SRFI-130] Returns a cursor pointing to the start of a string str. It returns a valid cursor on
an empty string too. It’s the same as string-cursor-end in that case.

string-cursor-end str [Function]
[SRFI-130] Returns a cursor pointing to the end of str (the point after the last character.)
If str is empty, it is the same as string-cursor-start. This cursor does not point to any
valid character of the string.

string-cursor-next str cur [Function]
[SRFI-130] Returns the cursor into str following cur. cur can also be an index. An error is
signaled if cur points to the end of the string.

string-cursor-prev str cur [Function]
[SRFI-130] Returns the cursor into str preceding cur. cur can also be an index. An error is
signaled if cur points to the beginning of the string.

string-cursor-forward str cur n [Function]
[SRFI-130] Returns the cursor into str following cur by n characters. cur can also be an
index.

string-cursor-back str curn [Function]
[SRFI-130] Returns the cursor into str preceding cur by n characters. cur can also be an
index.

string-index->cursor str index [Function]
[SRFI-130] Convert an index to a cursor. If index is a cursor it will be returned as-is.

string-cursor->index str cur [Function]
[SRFI-130] Convert a cursor to an index. If cur is a an index it will be returned as-is.

string-cursor-diff str start end [Function]
[SRFI-130] Returns the number of characters between start and end. It should be non-
negative if start precedes end, non-positive otherwise. start and end also accept index.

string-cursor=7 curl cur2 [Function]
string-cursor<? curl cur2 [Function]
string-cursor<=? curl cur2 [Function]

Chapter 6: Core library 170

string-cursor>? curl cur2 [Function)]

string-cursor>=? curl cur2 [Function]
[SRFI-130] Compares two cursors or two indexes (but not a cursor and an index) and returns
#t or #f accordingly.

6.11.6 String indexing

Since Gauche stores strings in multibyte encoding, random access requires O(N) by default. In
most cases, string access is either sequential or search-and-extract pattern, and Gauche provides
direct means for these operations, so you don’t need to deal with indexed access. However,
there may be a case that you have need more efficient random access string (mostly when
porting third-party code, we imagine).

There are a couple of ways to achieve O(1) random access.

First, instead of integer character indexes, you can use string cursors (see Section 6.11.5
[String cursors], page 168). It is defined by srfi-130, and you can use the code that’s using
srfi-130 as is, without worring about slow access. However, if external interface gives you integer
character index, converting index to cursor and vice versa takes O(N) after all.

There’s another way. You can precompute string indexr, mapping from integer character
index to the position in the multibyte string. It costs O(N) of time and space to compute it,
but once computed, you have O(1) random access. (We store positions for every K characters,
where K is between 16 to 256, so it won’t take up as large storage as the actual string body).

For portability, srfi-135 Immutable Texts provides O(1) accessible string as “texts”. On
Gauche, a text is just an immutable string with index attached.

string-build-index! str [Function]
Computes and attaches index to a string str, and returns str itself. The operation doesn’t
alter the content of str, and you can pass immutable string as well.
If str is a single-byte string (ASCII-only, or incomplete), or a short one (less than 64 octets),
no index is attached. It is ok to pass a string which already has an index; then index
computation is skipped.

The index is attached to the string’s content. If you alter str by e.g. string-set!, the index
is discarded.

string-fast-indexable? str [Function]
Returns #t iff index access of a string str is effectively O(1), that is, str is either a single-byte
string, a short string, or a long multibyte string with index computed.

6.11.7 String accessors & modifiers

string-length string [Function]
[R7RS base| Returns a length of (possibly incomplete) string string.

string-size string [Function]
Returns a size of (possibly incomplete) string. A size of string is a number of bytes string
occupies on memory. The same string may have different sizes if the native encoding scheme
differs.

For incomplete string, its length and its size always match.

string-ref cstring k :optional fallback [Function]
[R7RS+] Returns k-th character of a complete string cstring. It is an error to pass an incom-
plete string.
By default, an error is signaled if k is out of range (negative, or greater than or equal to the
length of cstring). However, if an optional argument fallback is given, it is returned in such
case. This is Gauche’s extension.

Chapter 6: Core library 171

If cstring is a multibyte string without index attached, this procedure takes O(k) time. See
Section 6.11.6 [String indexing], page 170, for ensuring O(1) access.

k can also be a string cursor (also Gauche’s extension). Cursor acccess is O(1).

string-byte-ref string k [Function]
Returns k-th byte of a (possibly incomplete) string string. Returned value is an integer
in the range between 0 and 255. k must be greater than or equal to zero, and less than
(string-size string).

string-set! string k char [Function]
[R7RS base| Substitute string’s k-th character by char. k must be greater than or equal to
zero, and less than (string-length string). Return value is undefined.
If string is an incomplete string, integer value of the lower 8 bits of char is used to set string’s
k-th byte.

See the notes in make-string about performance consideration.

string-byte-set! string k byte [Function]
Substitute string’s k-th byte by integer byte. byte must be in the range between 0 to 255,
inclusive. k must be greater than or equal to zero, and less than (string-size string). If
string is a complete string, it is turned to incomplete string by this operation. Return value
is undefined.

6.11.8 String comparison

string=7 stringl string2 string3 . .. [Function]
[R7RS base| Returns #t iff all arguments are strings with the same content.
If any of arguments is incomplete string, it returns #t iff all arguments are incomplete and
have exactly the same content. In other words, a complete string and an incomplete string
never equal to each other.

string<? stringl string2 string3 . .. [Function]
string<=7 stringl string2 string3 . .. [Function]
string>? stringl string?2 string3 . .. [Function]
string>=? stringl string2 string3 . .. [Function]

[R7TRS base] Compares strings in codepoint order. Returns #t iff all the arguments are
ordered.

Comparison between an incomplete string and a complete string, or between two incomplete
strings, are done by octet-to-octet comparison. If a complete string and an incomplete string
have exactly the same binary representation of the content, a complete string is smaller.

string-ci=? stringl string2 string3 . .. [Function]
string-ci<? stringl string2 string3 . .. [Function]
string-ci<=7? stringl string2 string3 . .. [Function]
string-ci>? stringl string?2 string3 . .. [Function]
string-ci>=? stringl string?2 string3 . .. [Function]
Case-insensitive string comparison.
These procedures fold argument character-wise, according to Unicode-defined character-
by-character case mapping. See char-foldcase for the details (Section 6.9 [Characters],
page 154). Character-wise case folding doesn’t handles the case like German eszett:
(string-ci=7 "\u0Odf" "SS") = #f
R7RS requires string-ci* procedures to use string case folding. Gauche provides R7RS-
conformant case insensitive comparison procedures in gauche.unicode (see Section 9.36.3
[Full string case conversion|, page 517). If you write in R7RS, importing (scheme char)
library, you'll use gauche.unicode’s string-ci* procedures.

Chapter 6: Core library 172

6.11.9 String utilities

substring string start end [Function]
[R7TRS+ base] Returns a substring of string, starting from start-th character (inclusive) and
ending at end-th character (exclusive). The start and end arguments must satisfy 0 <= start
< N, 0 <= end <= N, and start <= end, where N is the length of the string.

start and end can also be string cursors, but this is an extension of Gauche.
When start is zero and end is N, this procedure returns a copy of string.

Actually, extended string-copy explained below is a superset of substring. This procedure
is kept mostly for compatibility of R7RS programs. See also subseq in Section 9.30 [Sequence
framework], page 477, for the generic version.

string-append string . .. [Function]
[R7RS base| Returns a newly allocated string whose content is concatenation of string

See also string-concatenate in Section 11.5.9 [SRFI-13 String reverse & append], page 658.

string->list string :optional start end [Function]
list->string list [Function]
[R7RS base] Converts a string to a list of characters or vice versa.
You can give an optional start/end indexes to string->1list.

For 1ist->string, every elements of list must be a character, or an error is signaled. If you
want to build a string out of a mixed list of strings and characters, you may want to use
tree->string in Section 12.73 [Lazy text construction], page 935.

string-copy string :optional start end [Function]
[R7RS base] Returns a copy of string. You can give start and/or end index to extract the
part of the original string (it makes string-copy a superset of substring effectively).

If only start argument is given, a substring beginning from start-th character (inclusive) to
the end of string is returned. If both start and end argument are given, a substring from
start-th character (inclusive) to end-th character (exclusive) is returned. See substring
above for the condition that start and end should satisfy.

Node: R7RS’s destructive version string-copy! is provided by srfi-13 module (see
Section 11.5 [String library], page 652).

string-copy-immutable string :optional start end [Function]
If string is immutable, return it as is. Otherwise, returns an immutable copy of string. It is
a dual of string-copy which always returns a mutable copy.

The optional start and end argument may be a nonnegative integer character index and/or
string cursors to restrict the range of string to be copied.

string-fill! string char :optional start end [Function]
[R7RS base] Fills string by char. Optional start and end limits the effective area.

(string-fill! "orange" #\X)

= "XXXXXX"
(string-fill! "orange" #\X 2 4)
= "orXXge"

See the notes in make-string about performance consideration.

string-join strs :optional delim grammar [Function]
[SRFI-13] Concatenate strings in the list strs, with a string delim as ‘glue’.

Chapter 6: Core library 173

The argument grammar may be one of the following symbol to specify how the strings are
concatenated.

infix Use delim between each string. This mode is default. Note that this mode
introduce ambiguity when strs is an empty string or a list with a null string.
(String—join) ("apple“ "mango" "banana") " , u)
= "apple, mango, banana"
(string-join () ":")
:> nn
(String—join) (u n) ". u)
: nn

strict-infix
Works like infix, but empty list is not allowed to strs, thus avoiding ambiguity.

prefix Use delim before each string.
(string-join ’("usr" "local" "bin") "/" ’prefix)
= "/usr/local/bin"
(string-join () "/" ’prefix)
:> nn
(string-join ’("") "/" ’prefix)
: ||/ll
suffix Use delim after each string.
(string-join ’("a" "b" "c") "&" ’suffix)
= "agblcl"
(string-join ’() "&" ’suffix)
i nn
(string-join ’("") "&" ’suffix)
:> II&II
string-scan string item :optional return [Function]
string-scan-right string item :optional return [Function]

Scan item (either a string or a character) in string. While string-scan finds the leftmost
match, string-scan-right finds the rightmost match.

The return argument specifies what value should be returned when item is found in string.

It must be one of the following symbols.

index Returns the index in string if item is found, or #£. This is the default behavior.
(string-scan "abracadabra" "ada") = 5
(string-scan "abracadabra" #\c) = 4
(string-scan "abracadabra" "aba") = #f

before Returns a substring of string before item, or #£ if item is not found.
(string-scan "abracadabra" "ada" ’before) = "abrac"
(string-scan "abracadabra" #\c ’before) = "abra"

after Returns a substring of string after item, or #£ if item is not found.
(string-scan "abracadabra" "ada" ’after) = "bra"
(string-scan "abracadabra" #\c ’after) = "adabra"

beforex Returns a substring of string before item, and the substring after it. If item is

not found, returns (values #f #f).

(string-scan "abracadabra" "ada" ’beforex)
= "abrac" and "adabra"

Chapter 6: Core library 174

(string-scan "abracadabra" #\c ’beforex)
= "abra" and "cadabra"

afterx Returns a substring of string up to the end of item, and the rest. If item is not
found, returns (values #f #f).

(string-scan "abracadabra" "ada" ’afterx)
= "abracada" and "bra"

(string-scan "abracadabra" #\c ’afterx)
= "abrac" and "adabra"

both Returns a substring of string before item and after item. If item is not found,
returns (values #f #f).

(string-scan "abracadabra" "ada" ’both)
= "abrac" and "bra"

(string-scan "abracadabra" #\c ’both)
= "abra" and "adabra"

string-split string splitter :optional grammar limit start end [Function]

string-split string splitter :optional limit start end [Function]
[SRFI-152+] Splits string by splitter and returns a list of strings. splitter can be a character,
a character set, a string, a regexp, or a procedure.

If splitter is a character or a string, it is used as a delimiter. Note that srfi-152’s string-split
only allows strings for splitter (it also interprets the first optional argument as a grammar;
see below for the compatibility note.)

If splitter is a character set, any consecutive characters that are member of the character set
are used as a delimiter.

If a procedure is given to splitter, it is called for each character in string, and the consecutive
characters that caused splitter to return a true value are used as a delimiter.

(String_split ll/aa/bb//ccn #\/) j (" n ||aall "bbll nn "CCII)
(string-split "/aa/bb//cc" "/") ("" "aa" "bb" "" "cc")
(string-split "/aa/bb//cc" "//") ("/aa/bb" "cc")
(string-split "/aa/bb//cc" #[/]1) ("™ "aa" "bb" "cc")
(string-split "/aa/bb//cc" #/\/+/) ("™ "aa" "bb" "cc")
(string-split "/aa/bb//cc" #[\wl) = (/" "/ n//" ")
(string-split "/aa/bb//cc" char-alphabetic?) = ("/" "/" "//" "")

=
=
=
=

;; some boundary cases

(string-split "abc" #\/) = ("abc")

(string-split "" #\/) = (")
The grammar argument is the same as string-join above; it must be one of symbols infix,
strict-infix, prefix or suffix. When omitted, infix is assumed.

(string—split ll/a/b/c/ll n/u ’il’lfiX) = (u (1] llall nbu "C" n ||)

(String_split ll/a/b/c/ll II/II)prefix) : (Ilall llb" ||Cll n ")

(String_split Il/a/b/c/ll "/Il)Suffix) :> (II n lla" ||bl| "C")
In general, the following relationship holds:

(string-join XS DELIM GRAMMAR) = S

(string-split S DELIM GRAMMAR) = XS
If limit is given and not #f, it must be a nonnegative integer and specifies the maximum
number of match to the splitter. Once the limit is reached, the rest of string is included in
the result as is.

(string-split "a.b..c" "." ’infix 0) = ("a.b..c")

Chapter 6: Core library 175

(string-split "a.b..c" "." ’infix 1) = ("a" "b..c")
(string-split "a.b..c" "." ’infix 2) = ("a" "b" ".c")

Compatibility note: The grammar argument is added for the consistency of srfis (srfi-130,
srfi-152, see Section 11.28 [String library (reduced)], page 698). However, for the backward
compatibility and the convenience, it also accepts limit without grammar argument; it is
distinguishable since grammar is a symbol and limit is an integer. For the code that’s
compatible to srfi-152, use the first form that takes grammar argument.

(string-split "a.b..c" "." 2) = ("a" "b" ".c")
The start and end arguments limits input string in the given range before splitting.

See also string-tokenize in (see Section 11.5.12 [SRFI-13 Other string operations],
page 659).

string-map proc str str2 ... [Function]

string-map proc str :optional start end [Function]
[R7RS base]|[SRFI-13] Applies proc over each character in the input string, and gathers the
characters returned from proc into a string and returns it. It is an error if proc returns
non-character.

Because of historical reasons, this procedure has two interfaces. The first one takes one or
more input strings, and proc receives as many characters as the number of input strings,
each character being taken from each string. Iteration stops on the shortest string. This is
defined in R7RS-small, and consistent with map, vector-map, etc.

The second one takes only one string argument, and optional start/end arguments, which
may be nonnegative integer indexes or string cursors to limit the input range of the string.
This is defined in srfi-13, string library.

The order in which proc is applied is not guaranteed to be left to right. You shouldn’t depend
on the order.

If proc saves a continuation and it is invoked later, the result already returned from
string-map won't be affected (as specified in R7RS).
(string-map char-upcase "apple") = "APPLE"
(string-map (“[a b] (if (char>? a b) a b)) "orange" "apple") = "orpng"
(string-map char-upcase "pineapple" 0 4) = "PINE"

string-for-each proc str str2 ... [Function]

string-for-each proc str :optional start end [Function]
[R7RS base][SRFI-13] Applies proc over each character in the input string in left-to-right
order. The results of proc is discarded.

Because of historical reasons, this procedure has two interfaces, first one defined in R7RS
and second one defined in srfi-13. See string-map above for the explanation.

6.11.10 Incomplete strings

A string can be flagged as "incomplete" if it may contain byte sequences that do not consist of
a valid multibyte character in the Gauche’s native encoding.

Incomplete strings may be generated in several circumstances; reading binary data as a
string, reading a string data that has been 'chopped’ in middle of a multibyte character, or
concatenating a string with other incomplete strings, for example.

Incomplete strings should be regarded as an exceptional case. It used to be a way to handle
byte strings, but now we have u8vector (see Section 6.13.2 [Uniform vectors|, page 191) for that
purpose. In fact, we’re planning to remove it in the future releases.

Just in case, if you happen to get an incomplete string, you can convert it to a complete
string by string-incomplete->complete.

Chapter 6: Core library 176

k" [Reader Syntax]
Denotes incomplete string. The same escape sequences as the complete string syntax are
recognized.

Rationale of the syntax: ## is used for bit vectors. Since an incomplete strings is really a
byte vector, it has similarity.

Note: We used #x"...." for an incomplete string on 0.9.9 and before. It turned out that it
couldn’t coexist with bitvectors, for #x is a valid bitvector literal (zero-length vector), and
" is a delimiter, so #x"...." can be parsed as a zero-length bitvector followed by a string.
From 0.9.10, we changed the incomplete string literal to #xx"...". It’s a bit lengthy, but
incomplete strings are anomalies and shouldn’t be used often anyway.

For the backward compatibility, #*"..." is still read as an incomplete string literal, unless
the reader lexical mode is strict-r7 (see Section 6.21.7.2 [Reader lexical mode], page 253,
for the details). If the reader lexical mode is warn-legacy, it is read as an incomplete string,
but a warning is issued. If the mode is strict-r7, it is read as a zero-length bitvector
followed by a string.

In future releasers, #*"..." would be warned by default, and later we’ll gradually move to
strict-r7 behavior.

string-incomplete->complete str :optional handling filler [Function]
Reinterpret the content of an incomplete string str and returns a newly created complete
string from it. The handling argument specifies how to handle the illegal byte sequences in
str.

#f If str contains an illegal byte sequence, give up the conversion and returns #f£.
This is the default behavior.

romit Omit any illegal byte sequences.

:replace Replace each byte in illegal byte sequences by a character given in filler argument,
defaulted to 7.

:escape Replace each byte in illegal byte sequences by a sequence of filler <hexdigit>
<hexdigit>. Besides, the filler characters in the original string is replaced with
filler filler.

If str is already a complete string, its copy is returned.

The procedure always returns a complete string, except when the handling argument is #f
(default) and the input is an incomplete string, in which case #f is returned.

When Gauche’s internal encoding is utf-8, the procedure works as follows:

(string-incomplete->complete #x*"_abc")
= "_abc" ; can be represented as a complete string

(string-incomplete->complete #x*"_ab\x80;c")
= #f ; can’t be represented as a complete string

(string-incomplete->complete #*"_ab\x80;c" :omit)
= "_abc" ; omit the illegal bytes

(string-incomplete->complete #*"_ab\x80;c" :replace #_)
= "_ab_c" ; replace the illegal bytes

(string-incomplete->complete #x*"_ab\x80;c" :escape #_)
= "__ab_80c" ; escape the illegal bytes and escape char itself

Chapter 6: Core library 177

6.12 Regular expressions

Gauche has a built-in regular expression engine which is mostly upper-compatible of POSIX
extended regular expression, plus some extensions from Perl 5 regexp.

A special syntax is provided for literal regular expressions. Also regular expressions are
applicable, that is, it works like procedures that match the given string to itself. Combining
with these two features enables writing some string matching idioms compact.

(find #/pattern/ list-of-strings)
= match object or #f

6.12.1 Regular expression syntax

#/regexp-spec/ [Reader Syntax]

#/regexp-spec/i [Reader Syntax]
Denotes literal regular expression object. When read, it becomes an instance of <regexp>.
If a letter ’i’ is given at the end, the created regexp becomes case-folding regexp, i.e. it
matches in the case-insensitive way.

The advantage of using this syntax over string->regexp is that the regexp is compiled only
once. You can use literal regexp inside loop without worrying about regexp compilation
overhead. If you want to construct regexp on-the-fly, however, use string->regexp.

Gauche’s built-in regexp syntax follows POSIX extended regular expression, with a bit of
extensions taken from Perl. (Scheme Regulare Expression (SRE) is also supported as an al-
ternative syntax; see Section 10.3.19 [R7RS regular expressions], page 601, for the details of
SRE.)

rex Matches zero or more repetition of re.
re+ Matches one or more repetition of re.
re? Matches zero or one occurrence of re.
re{n}

re{n,m} Bounded repetition. re{n} matches exactly n occurrences of re. re{n,m} matches
at least n and at most m occurrences of re, where n <= m. In the latter form,
either n or m can be omitted; omitted n is assumed as 0, and omitted m is assumed
infinity.

rex?

re+?

re??

re{n,m}? Same as the above repetition construct, but these syntaxes use "non-greedy" or
"lazy" match strategy. That is, they try to match the minimum number of occur-
rences of re first, then retry longer ones only if it fails. In the last form either n or
m can be omitted. Compare the following examples:

(rxmatch-substring (#/<.*>/ "<tagl><tag2><tag3>") 0)
= "<tagl><tag2><tag3>"

(rzxmatch-substring (#/<.%7>/ "<tagl><tag2><tag3>") 0)

:> "<tag1>"
(re...) Clustering with capturing. The regular expression enclosed by parenthesis works as
a single re. Besides, the string that matches re ... is saved as a submatch.
(7:re...)
Clustering without capturing. re ... works as a single re, but the matched string

isn’t saved.

Chapter 6: Core library 178

(?<name>re...)

(?i:re...)
(?7-i:re...

Named capture and clustering. Like (re...), but adds the name name to the
matched substring. You can refer to the matched substring by both index number
and the name.

When the same name appears more than once in a regular expression, it is undefined
which matched substring is returned as the submatch of the named capture.

)

Lexical case sensitivity control. (?7i:re...) makes re... matches case-insensitively,
while (?7-i:re...) makes re. .. matches case-sensitively.

Perl’s regexp allows several more flags to appear between ’?” and ’:”. Gauche only
supports above two, for now.

patternl|pattern2]|...

\n

\k<name>

[char-set-

\s, \d, \w

\S, \D, \W

~ %

\b, \B

Alternation. Matches either one of patterns, where each pattern is re

Backreference. n is an integer. Matches the substring captured by the n-th cap-
turing group. (counting from 1). When capturing groups are nested, groups are
counted by their beginnings. If the n-th capturing group is in a repetition and has
matched more than once, the last matched substring is used.

Named backreference. Matches the substring captured by the capturing group with
the name name. If the named capturing group is in a repetition and has matched
more than once, the last matched substring is used. If there are more than one
capturing group with name, matching will succeed if the input matches either one
of the substrings captured by those groups.

Matches any character (including newline).

spec]
Matches any of the character set specified by char-set-spec. See Section 6.10 [Char-
acter sets], page 159, for the details of char-set-spec.

Matches a whitespace character (char-set:ascii-whitespace, #[\u0009-\u000d
1), a digit character(char-set:ascii-digit, #[0-9]), or a word-constituent char-
acter (char-set:ascii-word, #[A-Za-z0-9_]), respectively. Note that they don’t
include characters outside ASCII range.

Can be used both inside and outside of character set.

Matches the complement character set of \s, \d and \w, respectively.

Beginning and end of string assertion, when appears at the beginning or end of the
pattern, or optionally, beginning and end of line in multi-line mode.

These characters loses special meanings and matches the characters themselves if
they appear in the position other than the beginning of the pattern (for ~) or the
end (for $). For the sake of recognizing those characters, lookahead/lookbehind as-
sertions ((?=...), (7!...), (7<=...), (?<!...)) and atomic clustering ((?>...))
are treated as if they are a whole pattern. That is, ~ at the beginning of those
groupings are beginning-of-string assertion no matter where these group appear in
the containing regexp. So as $ at the end of these groupings.

Word boundary and non word boundary assertion, respectively. That is, \b matches
an empty string between word-constituent character and non-word-constituent char-
acter, and \B matches an empty string elsewhere.

Chapter 6: Core library 179

\;
\"
\# These are the same as ;, ", and #, respectively, and can be used to avoid confusing

FEmacs or other syntax-aware editors that are not familiar with Gauche’s extension.

(?=pattern)

(?!pattern)
Positive/negative lookahead assertion. Match succeeds if pattern matches (or does
not match) the input string from the current position, but this doesn’t move the
current position itself, so that the following regular expression is applied again from
the current position.

For example, the following expression matches strings that might be a phone num-
ber, except the numbers in Japan (i.e. ones that begin with "81").

\+(7!181)\d{9,}

(7<=pattern)

(7<!pattern)
Positive/negative lookbehind assertion. If the input string immediately before the
current input position matches pattern, this pattern succeeds or fails, respectively.
Like lookahead assertion, the input position isn’t changed.

Internally, this match is tried by reversing pattern and applies it to the backward
of input character sequence. So you can write any regexp in pattern, but if the
submatches depend on the matching order, you may get different submatches from
when you match pattern from left to right.

(?>pattern)
Atomic clustering. Once pattern matches, the match is fixed; even if the following
pattern fails, the engine won’t backtrack to try the alternative match in pattern.

rex+
ret++
re?+ They are the same as (7>re*), (?>re+), (7>re?), respectively.

(?test-pattern then-pattern)

(?test-pattern then-pattern|else-pattern)
Conditional matching. If test-pattern counts true, then-pattern is tried; otherwise
else-pattern is tried when provided.

test-pattern can be either one of the following:

(integer)
Backreference. If integer-th capturing group has a match, this test
counts true.

(?=pattern)

(?!pattern)
Positive /negative lookahead assertion. It tries pattern from the current
input position without consuming input, and if the match succeeds or
fails, respectively, this test counts true.

(?<=pattern)

(?<!pattern)
Positive/negative lookbehind assertion. It tries pattern backward from
the left size of the current input position, and if the match succeeds or
fails, respectively, this test counts true.

6.12.2 Using regular expressions

Chapter 6: Core library 180

Regexp object and rxmatch object

<regexp> [Builtin Class]
Regular expression object. You can construct a regexp object from a string by
string->regexp or sre->regexp at run time. Gauche also has a special syntax to denote
regexp literals, which construct regexp object at loading time.

Gauche’s regexp engine is fully aware of multibyte characters.

<regmatch> [Builtin Class]
Regexp match object. A regexp matcher rxmatch returns this object if match. This object
contains all the information about the match, including submatches.

The advantage of using match object, rather than substrings or list of indices, is efficiency.
The regmatch object keeps internal state of match, and computes indices and/or substrings
only when requested. This is particularly effective for multibyte strings, for index access is
slow on them.

string->regexp string :key case-fold multi-line [Function]
Takes string as a regexp specification, and constructs an instance of <regexp> object.

If a true value is given to the keyword argument case-fold, the created regexp object becomes
case-folding regexp. (See the above explanation about case-folding regexp).

If a true value is given to the keyword argument multi-line, ~ and $ will assert the beginning
and end of line in addition to beginning and end of string. Popular line terminators (LF only,
CRLF and CR only) are recognized.

sre->regexp sre :key multi-line [Function]
Takes a scheme regexp sre and returns a <regexp> object. The zero-th group is always
captured.

If a false value is given to the keyword argument multi-line, which is the default, bol and
eol behave like bos and eos (i.e. only match at the beginning or end of string).

regexp? obj [Function]
Returns true iff obj is a regexp object.

regexp->string regexp [Function]
Returns a source string describing the regexp regexp. The returned string is immutable.

regexp->sre regexp [Function]
Returns a scheme regexp (SRE) describing the regexp regexp. See Section 10.3.19 [R7RS
regular expressions|, page 601, for the details of SRE.

regexp-num-groups regexp [Function]
regexp-named-groups regexp [Function]
Queries the number of capturing groups, and an alist of named capturing groups, in the given
regexp, respectively.
The number of capturing groups corresponds to the number of matches returned by
rxmatch-num-matches. Note that the entire regexp forms a group, so the number is al-
ways positive.
The alist returned from regexp-named-groups has the group name (symbol) in car, and its
subgroup number in cdr. Note that the order of groups in the alist isn’t fixed.
(regexp-num-groups #/abc(?<foo>def) (ghi(?<bar>jkl) (mno))/)
= 5
(regexp-named-groups #/abc(?<foo>def) (ghi(?<bar>jkl) (mno))/)
= ((bar . 3) (foo . 1))

Chapter 6: Core library 181

Trying a match

rxmatch regexp string :optional start end [Function]
Regexp is a regular expression object. A string string is matched by regexp. If it matches,
the function returns a <regmatch> object. Otherwise it returns #f.

If start and/or end are given, only the substring between start (inclusive) and end (exclusive)
is searched.

This is called match, regexp-search or string-match in some other Scheme implementa-
tions.

Internally, Gauche uses backtracking for regexp match. When regexp has multiple match
possibilities, Gauche saves an intermediate result in a stack and try one choice, and if it fails
try another. Depending on regexp, the saved results may grow linear to the input. Gauche
allocates a fixed amount of memory for that, and if there are too many saved results, you’ll
get the following error:

ERROR: Ran out of stack during matching regexp #/.../. Too many retries?

If you get this error, consider using hybrid parsing approach. Our regexp engine isn’t made to
do everything-in-one-shot parsing; in most cases, the effect of complex regexp can be achieved
better with more powerful grammar than regular grammar.

To apply the match repeatedly on the input string, or to match from the input stream (such
as the data from the port), you may want to check grxmatch in gauche.generator (see
Section 9.11.2 [Generator operations], page 408).

regexp string [Generic application]
A regular expression object can be applied directly to the string. This works the same
as (rxmatch regexp string), but allows shorter notation. See Section 6.15.6 [Applicable
objects], page 215, for generic mechanism used to implement this.

Accessing the match result

rxmatch-start match :optional (i 0) [Function]
rxmatch-end match :optional (i 0) [Function]
rxmatch-substring match :optional (i 0) [Function]

Match is a match object returned by rxmatch. If i equals to zero, the functions return start,
end or the substring of entire match, respectively. With positive integer I, it returns those of
I-th submatches. It is an error to pass other values to I.

It is allowed to pass #f to match for convenience. The functions return #f in such case.

These functions correspond to scsh’s match:start, match:end and match:substring.

rxmatch-after match :optional (i 0) [Function]

rxmatch-before match :optional (i 0) [Function]
Returns substring of the input string after or before match. If optional argument is given,
the i-th submatch is used (0-th submatch is the entire match).

(define match (rxmatch #/(\d+)\.(\d+)/ "pi=3.14..."))

(rxmatch-after match) = "..."
(rxmatch-after match 1) = ".14..."

(rzmatch-before match) = "pi="
(rzxmatch-before match 2) = "pi=3."

Chapter 6: Core library 182

rxmatch-substrings match :optional start end [Function]
rxmatch-positions match :optional start end [Function]
Retrieves multiple submatches (again, 0-th match is the entire match), in substrings and in
a cons of start and end position, respectively.
(rzmatch-substrings (#/(\d+):(\d+):(\d+)/ "12:34:56"))
:> ("12:34:56" "12" ll34" ||56ll)

(rzmatch-positions (#/(\d+):(\d+):(\d+)/ "12:34:56"))
= ((0.8) (0.2) (3.5) (6.8))

For the convenience, you can pass #f to match; those procedures returns () in that case.

The optional start and end arguments specify the range of submatch index. If omitted, start
defaults to 0 and end defaults to (rxmatch-num-matches match). For example, if you don’t
need the whole match, you can give 1 to start as follows:
(rzmatch-substrings (#/(\d+):(\d+):(\d+)/ "12:34:56") 1)
:> (||12ll "34" II56II)

rxmatch->string regexp string :optional selector . .. [Function]
A convenience procedure to match a string to the given regexp, then returns the matched
substring, or #f if it doesn’t match.
If no selector is given, it is the same as this:
(rzmatch-substring (rxmatch regexp string))
If an integer is given as a selector, it returns the substring of the numbered submatch.

If a symbol after or before is given, it returns the substring after or before the match. You
can give these symbols and an integer to extract a substring before or after the numbered
submatch.

gosh> (rxmatch->string #/\d+/ "foo314bar")

ll314||

gosh> (rxmatch->string #/(\w+)Q([\w.]+)/ "foo@example.com" 2)

"example.com"

gosh> (rxmatch->string #/(\w+)@([\w.]+)/ "foo@example.com" ’before 2)

llfoo@"
regmatch :optional index [Generic application)]
regmatch ’before :optional index [Generic application]
regmatch ’after :optional index [Generic application)]

A regmatch object can be applied directly to the integer index, or a symbol before or
after. They works the same as (rxmatch-substring regmatch index), (rxmatch-before
regmatch), and (rxmatch-after regmatch), respectively. This allows shorter notation. See
Section 6.15.6 [Applicable objects], page 215, for generic mechanism used to implement this.

(define match (#/(\d+)\.(\d+)/ "pi=3.14..."))

(match) = "3 14"
(match 1) = n3n
(match 2) = nqqn
(match ’after) = n "

(match ’after 1) = ".14..."

(match ’before) = "pi="
(match ’before 2) = "pi=3."

Chapter 6: Core library 183

(define match (#/(7<integer>\d+)\.(?<fraction>\d+)/ "pi=3.14..."))

(match 1)
(match 2)

j ll3ll
j ll14||
(match ’integer) = "3"
(match ’fraction) = "14"

(match ’after ’integer) = ".14..."
(match ’before ’fraction) = "pi=3."

rxmatch-num-matches match [Function]

rxmatch-named-groups match [Function]
Returns the number of matches, and an alist of named groups and whose indices, in match.
This corresponds regexp-num-groups and regexp-named-groups on a regular expression
that has been used to generate match. These procedures are useful to inspect match object
without having the original regexp object.

The number of matches includes the "whole match", so it is always a positive integer for a
<regmatch> object. The number also includes the submatches that don’t have value (see the
examples below). The result of rxmatch-named-matches also includes all the named groups
in the original regexp, not only the matched ones.

For the convenience, rxmatch-num-matches returns 0 and rxmatch-named-groups returns
O if match is #£.

(rxmatch-num-matches (rxmatch #/abc/ "abc")) = 1
(rxmatch-num-matches (rxmatch #/(a(.))|(b(.))/ "ba")) = 5
(rxmatch-num-matches #f) = 0

(rxmatch-named-groups
(rxmatch #/(7<h>\d\d) : (7<m>\d\d) (: (?7<s>\d\d))7?/ "12:34"))
= ((s . 4) (m.2) (. 1)

Convenience utilities

regexp-replace regexp string substitution [Function]

regexp-replace-all regexp string substitution [Function]
Replaces the part of string that matched to regexp for substitution. regexp-replace just re-
places the first match of regexp, while regexp-replace-all repeats the replacing throughout
entire string.

substitution may be a string or a procedure. If it is a string, it can contain references to the
submatches by digits preceded by a backslash (e.g. \2) or the named submatch reference
(e.g. \k<name>. \O refers to the entire match. Note that you need two backslashes to include
backslash character in the literal string; if you want to include a backslash character itself in
the substitution, you need four backslashes.

(regexp-replace #/def|DEF/ "abcdefghi" "...")
= "abc...ghi"

(regexp-replace #/def |DEF/ "abcdefghi" "[\\O|")
= "abc|def|ghi"

(regexp-replace #/def |DEF/ "abcdefghi" "[\\\\O[|")
= "abc|\\O|ghi"

(regexp-replace #/c(.*)g/ "abcdefghi" "|[\\1[|")

Chapter 6: Core library 184

= "abl|def [hi"
(regexp-replace #/c(?<match>.*)g/ "abcdefghi" "|\\k<match>|")
= "abldef|hi"

If substitution is a procedure, for every match in string it is called with one argument, regexp-
match object. The returned value from the procedure is inserted to the output string using
display.
(regexp-replace #/c(.x)g/ "abcdefghi"
(lambda (m)
(list->string
(reverse
(string->list (rxmatch-substring m 1))))))
= "abfedhi"

Note: regexp-replace-all applies itself recursively to the remaining of the string after
match. So the beginning of string assertion in regexp doesn’t only mean the beginning of
input string.

Note: If you want to operate on multiple matches in the string instead of replacing it, you
can use lrxmatch in gauche.lazy module or grxmatch in gauche.generator module. Both
can match a regexp repeatedly and lazily to the given string, and lrxmatch returns a lazy
sequence of regmatches, while grxmatch returns a generator that yields regmatches.

(map rxmatch-substring (lrxmatch #/\w+/ "a quick brown fox!7"))
:> (llall "quickll "brownll "fOX")

regexp-replacex* string rx1 subl rx2 sub2 . .. [Function]

regexp-replace-allx* string rxI subl rx2 sub2 ... [Function]
First applies regexp-replace or regexp-replace-all to string with a regular expression rx1
substituting for subl, then applies the function on the result string with a regular expression
rx2 substituting for sub2, and so on. These functions are handy when you want to apply
multiple substitutions sequentially on a string.

regexp-quote string [Function]
Returns a string with the characters that are special to regexp escaped.

(regexp-quote "[2002/10/12] touched foo.h and *.c")
= "\\[2002/10/12\\] touched foo\\.h and *\\.c"

In the following macros, match-expr is an expression which produces a match object or #f£.
Typically it is a call of rxmatch, but it can be any expression.

rxmatch-let match-expr (var ...) form . .. [Macro]
Evaluates match-expr, and if matched, binds var ... to the matched strings, then evaluates
forms. The first var receives the entire match, and subsequent variables receive submatches.
If the number of submatches are smaller than the number of variables to receive them, the
rest of variables will get #f.
It is possible to put #f in variable position, which says you don’t care that match.
(rxmatch-let (rxmatch #/(\d+):(\d+): (\d+)/
"Jan 1 23:59:58, 2001")
(time hh mm ss)

(list time hh mm ss))
= ("23:59:58" ||23|| ||59n ||58ll)

(rxmatch-let (rxmatch #/(\d+):(\d+):(\d+)/
"Jan 1 23:59:58, 2001")

Chapter 6: Core library 185

(#f hh mm)
(1ist hh mm))
:> ("23" "59“)

This macro corresponds to scsh’s 1let-match.

rxmatch-if match-expr (var . ..) then-form else-form [Macro]
Evaluates match-expr, and if matched, binds var ... to the matched strings and evalu-
ate then-form. Otherwise evaluates else-form. The rule of binding vars is the same as
rxmatch-let.

(rxmatch-if (rxmatch #/(\d+:\d+)/ "Jan 1 11:22:33")
(time)
(format #f "time is ~a" time)
"unknown time")
= "time is 11:22"

(rxmatch-if (rxmatch #/(\d+:\d+)/ "Jan 1 11-22-33")
(time)
(format #f "time is ~a" time)
"unknown time")
= "unknown time"

This macro corresponds to scsh’s if-match.

rxmatch-cond clause . .. [Macro]
Evaluate condition in clauses one by one. If a condition of a clause satisfies, rest portion of
the clause is evaluated and becomes the result of rxmatch-cond. Clause may be one of the
following pattern.

(match-expr (var ...) form ...)
Evaluate match-expr, which may return a regexp match object or #£. If it returns
a match object, the matches are bound to vars, like rxmatch-let, and forms are
evaluated.

(test expr form ...)
Evaluates expr. If it yields true, evaluates forms.

(test expr => proc)
Evaluates expr and if it is true, calls proc with the result of expr as the only
argument.

(else form ...)
If this clause exists, it must be the last clause. If other clauses fail, forms are

evaluated.

If no else clause exists, and all the other clause fail, an undefined value is returned.

;3 parses several possible date format
(define (parse-date str)
(rxmatch-cond
((rxmatch #/°(\d\d?)\/(\d\d?)\/(\d\d\d\d)$/ str)
(#f mm dd yyyy)
(map string->number (list yyyy mm dd)))
((rxmatch #/7 (\d\d\d\d)\/(\d\d?)\/(\d\d?)$/ str)
(#f yyyy mm dd)
(map string->number (list yyyy mm dd)))
((rxmatch #/°\d+\/\d+\/\d+$/ str)

Chapter 6: Core library 186

(#£)
(errorf "ambiguous: “s" str))
(else (errorf "bogus: “s" str))))

(parse-date "2001/2/3") = (2001 2 3)
(parse-date "12/25/1999") = (1999 12 25)

This macro corresponds to scsh’s match-cond.

rxmatch-case string-expr clause . . . [Macro]
String-expr is evaluated, and clauses are interpreted one by one. A clause may be one of the
following pattern.

(re (var ...) form ...)
Re must be a literal regexp object (see Section 6.12 [Regular expressions],
page 177). If the result of string-expr matches re, the match result is bound
to vars and forms are evaluated, and rxmatch-case returns the result of the last
form.

If re doesn’t match the result of string-expr, string-expr yields non-string value,
the interpretation proceeds to the next clause.

(test proc form ...)
A procedure proc is applied on the result of string-expr. If it yields true value,
forms are evaluated, and rxmatch-case returns the result of the last form.

If proc yields #£f, the interpretation proceeds to the next clause.

(test proc => proc2)
A procedure proc is applied on the result of string-expr. If it yields true
value, proc2 is applied on the result, and its result is returned as the result
of rxmatch-case.

If proc yields #£, the interpretation proceeds to the next clause.

(else form ...)
This form must appear at the end of clauses, if any. If other clauses fail, forms are
evaluated, and the result of the last form becomes the result of rxmatch-case.

(else => proc)
This form must appear at the end of clauses, if any. If other clauses fail, proc
is evaluated, which should yield a procedure taking one argument. The value of
string-expr is passed to proc, and its return values become the return values of
rxmatch-case. rx

If no else clause exists, and all other clause fail, an undefined value is returned.
The parse-date example above becomes simpler if you use rxmatch-case

(define (parse-date2 str)
(rxmatch-case str

(test (lambda (s) (not (string? s))) #f)
#/7(\d\d?)\/(\d\d?)\/ (\d\d\d\d) $/ (#f mm dd yyyy)
(map string->number (list yyyy mm dd)))
@#/7 (\d\d\d\d) \/ (\d\d?)\/(\d\d?)$/ (#f yyyy mm dd)
(map string->number (list yyyy mm dd)))
(#/°\d+\/\d+\/\d+$/ (#1£)
(errorf "ambiguous: “s" str))
(else (errorf "bogus: “s" str))))

Chapter 6: Core library 187

6.12.3 Inspecting and assembling regular expressions

When Gauche reads a string representation of regexp, first it parses the string and construct
an abstract syntax tree (AST), performs some optimizations on it, then compiles it into an
instruction sequence to be executed by the regexp engine.

The following procedures expose this process to user programs. It may be easier for programs
to manipulate an AST than a string representation.

regexp-parse string :key case-fold multi-line [Function]
Parses a string specification of regexp in string and returns its AST, represented in S-
expression. See below for the spec of AST.

When a true value is given to the keyword argument case-fold, returned AST will match
case-insensitively. (Case insensitive regexp is handled in parser level, not by the engine).

regexp-parse-sre sre [Function]
Parses sre as a Scheme Regular Expression (SRE) as described in SRFI-115 and returns its
AST. See Section 10.3.19 [R7RS regular expressions|, page 601, see Section 10.3.19 [R7RS
regular expressions|, page 601.

regexp-optimize ast [Function]
Performs some rudimental optimization on the regexp AST, returning regexp AST.

Currently it only optimizes some trivial cases. The plan is to make it cleverer in future.

regexp-compile ast :key multi-line [Function]
Takes a regexp ast and returns a regexp object. Currently the outermost form of ast must
be the zero-th capturing group. (That is, ast should have the form (0 #f x ...).) The outer
grouping is always added by regexp-parse to capture the entire regexp.

Note: The function does some basic check to see the given AST is valid, but it may not
reject invalid ASTs. In such case, the returned regexp object doesn’t work properly. It is
caller’s responsibility to provide a properly constructed AST. (Even if it rejects an AST,
error messages are often incomprehensible. So, don’t use this procedure as a AST validness
checker.)

regexp-ast regexp [Function]
Returns AST used for the regexp object regexp.

regexp-unparse ast :key (on-error :error) [Function]
From the regexp’s ast, reconstruct the string representation of the regexp. The keyword
argument on-error can be a keyword :error (default) or #f. If it’s the former, an error is
signaled when ast isn’t valid regexp AST. If it’s the latter, regexp-unparse just returns #f.

This is the structure of AST. Note that this is originally developed only for internal use, and
not very convenient to manipulate from the code (e.g. if you insert or delete a subtree, you have
to renumber capturing groups to make them consistent.)

<ast> : <clause> ; special clause
| <item> ; matches <item>
<item> : <char> ; matches char
| <char-set> ; matches char set
| (comp . <char-set>) ; matches complement of char set
| any ; matches any char
| bos | eos ; beginning/end of string assertion
| bol | eol ; beginning/end of line assertion
| bow | eow | wb | nwb ; word-boundary/negative word boundary assertion
| I

bog | eog ; beginning/end of grapheme assertion

Chapter 6: Core library 188

<clause> : (seq <ast> ...) ; sequence
| (seq-uncase <ast> ...) ; sequence (case insensitive match)
| (seq-case <ast> ...) ; sequence (case sensitive match)
| (alt <ast> ...) ; alternative
| (rep <m> <n> <ast> ...) ; repetition at least <m> up to <n> (greedy)
; <n> may be ‘#f°’
| (rep-min <m> <n> <ast> ...)

; repetition at least <m> up to <n> (lazy)
; <n> may be ‘#f’

| (rep-while <m> <n> <ast> ...)

; like rep, but no backtrack
| (<integer> <symbol> <ast> ...)

; capturing group. <symbol> may be #f.
| (cpat <condition> (<ast> ...) (<ast> ...))

; conditional expression
(backref . <integer>) ; backreference by group number

|

| (backref . <symbol>) ; backreference by name

| (once <ast> ...) ; standalone pattern. no backtrack

| (assert . <asst>) ; positive lookahead assertion

| (nassert . <asst>) ; negative lookahead assertion
<condition> : <integer> ; (?(1)yes|no) style conditional expression

| (assert . <asst>) ; (?(?=comdition)...) or (?(?<=condition)...)

| (nassert . <asst>) ; (?(?!condition)...) or (?(?<!condition)...)

<asst> : <ast> ...
| ((lookbehind <ast> ...))

6.13 Vector family

Vectors are fixed-size, O(1) accessible sequence of values. Scheme has traditionally offered a
vector of arbitrary objects, which is described in Section 6.13.1 [Vectors], page 188.

In R7RS-large, there’re also homogeneous numeric vectors (uvectors), which can contain
fixed range of numeric objects efficiently. We explain them in Section 6.13.2 [Uniform vectors],
page 191.

Gauche also supports bitvectors, which can contain sequence of bits. See Section 6.13.3
[Bitvectors], page 194, for the details.

Finally, weak vectors are a vector of arbitrary objects using weak pointers. See Section 6.13.4
[Weak vectors], page 196.

6.13.1 Vectors

<vector> [Builtin Class]
A vector is a simple 1-dimensional array of Scheme objects. You can access its element by
index in constant time. Once created, a vector can’t be resized.

Class <vector> inherits <sequence> and you can use various generic functions such as map
and fold on it. See Section 9.5 [Collection framework], page 372, and See Section 9.30
[Sequence framework], page 477.

If you keep only a homogeneous numeric type, you may be able to use SRFI-4 homogeneous
vectors (see Section 11.2 [Homogeneous vectors], page 650).

R7RS defines bytevectors; in Gauche, they’'re just u8vectors in gauche.uvector module
(r7rs modules defines aliases. see Section 10.2.2 [R7RS base library|, page 547).

See Section 10.3.2 [R7RS vectors], page 559, for additional operations on vectors.

vector? obj [Function]
[R7RS base| Returns #t if obj is a vector, #f otherwise.

Chapter 6: Core library 189

make-vector k :optional fill [Function]
[R7RS base] Creates and returns a vector with length k. If optional argument fill is given,
each element of the vector is initialized by it. Otherwise, the initial value of each element is
undefined.

vector obj ... [Function]
[R7RS base| Creates a vector whose elements are obj

vector-tabulate len proc [Function]
Creates a vector of length len, initializing i-th element of which by (proc i) for all i between
0 and len

(vector-tabulate 5 ("x (* x x)))
= #(0 1 4 9 16)

vector-length vector [Function]
[R7RS base| Returns the length of a vector vector.

With gauche.collection module, you can also use a method size-of.

vector-ref vector k :optional fallback [Function]
[R7TRS+] Returns k-th element of vector vector.

By default, vector-ref signals an error if k is negative, or greater than or equal to the length
of vector. However, if an optional argument fallback is given, it is returned for such case.
This is an extension of Gauche.

With gauche.sequence module, you can also use a method ref.

vector-set! vector k obj [Function]
[R7RS base| Sets k-th element of the vector vector to obj. It is an error if k is negative or
greater than or equal to the length of vector.

With gauche.sequence module, you can also use a setter method of ref.

vector->list vector :optional start end [Function]
list->vector list :optional start end [Function]
[R7TRS+] Converts a vector to a list, or vice versa.

The optional start and end arguments limit the range of the source. (R7RS don’t define start
and end arguments for list->vector.)

(vector->list ’#(1 2 3 4 5)) = (1 2345)
(list->vector (1 2 3 4 5)) = #(1 2 3 4 5)
(vector->list ’#(1 2 3 4 5) 2 4) = (3 4)
(list->vector (circular-list ’a ’b ’c) 1 6)

= #(b c a b c)

With gauche.collection module, you can use (coerce-to <list> vector) and (coerce-to
<vector> list) as well.

reverse-list->vector list :optional start end [Function]
[R7RS vector] Without optional arguments, it returns the same thing as (list->vector
(reverse list)), but does not allocate the intermediate list. The optional start and end
argument limits the range of the input list.

(reverse-list->vector ’(abcde f g) 15)
= #(e d c b)

Chapter 6: Core library 190

vector->string vector :optional start end [Function)]

string->vector string :optional start end [Function]
[R7RS base] Converts a vector of characters to a string, or vice versa. It is an error to pass
a vector that contains other than characters to vector->string.

The optional start and end arguments limit the range of the source.

(vector->string ’#(#\a #\b #\c #\d #\e)) = "abcde"
(string->vector "abcde") = #(#\a #\b #\c #\d #\e)
(vector->string ’#(#\a #\b #\c #\d #\e) 2 4) = ("cd")

With gauche.collection module, you can use (coerce-to <string> vector) and (coerce-to
<vector> string) as well.

vector-fill! vector fill :optional start end [Function]
[R7RS base| Sets all elements in a vector vector to fill.

Optional start and end limits the range of effect between start-th index (inclusive) to end-th
index (exclusive). Start defaults to zero, and end defaults to the length of vector.

vector-copy vector :optional start end fill [Function]
[R7RS base| Copies a vector vector. Optional start and end arguments can be used to limit
the range of vector to be copied. If the range specified by start and end falls outside of the
original vector, the fill value is used to fill the result vector.

(vector-copy ’#(1 2 3 4 5)) = #(1 2 3 4 5)
(vector-copy ’#(1 2 3 4 5) 2 4) = #(3 4)
(vector-copy ’#(1 2 3 4 5) 3 7 #f) = #(4 5 #f #f)

vector-copy! target tstart source :optional sstart send [Function]
[R7RS base] Copies the content of source vector into the target vector starting from tstart
in the target. The target vector must be mutable. Optional sstart and send limits the range
of source vector.
(rletl v (vector ’a ’b ’c ’d ’e)
(vector-copy! v 2 ’#(1 2)))
= #(ab1l2e)
(rletl v (vector ’a ’b ’c ’d ’e)
(vector-copy! v 2 *#(1 2 3 4) 1 3))
= #(a b 2 3 e)
An error is raised if the portion to be copied is greater than the room in the target (that is,
between tstart to the end).

It is ok to pass the same vector to target and source; it always works even if the regions of
source and destination are overlapping.

vector-append vec ... [Function]
[R7RS base| Returns a newly allocated vector whose contents are concatenation of elements
of vec in order.
(vector-append ’#(1 2 3) ’#(a b)) = #(1 2 3 a b)
(vector-append) = #()

vector-map proc vecl vec2 . .. [Function]
[R7RS base] Returns a new vector, i-th of which is calculated by applying proc on the list of
each i-th element of vecl vec2 The length of the result vector is the same as the shortest

vector of the arguments.

(vector-map + ’#(1 2 3) ’#(4 5 6 7))
= #(56 7 9)

Chapter 6: Core library 191

The actual order proc is called is undefined, and may change in the future versions, so proc
shouldn’t use side effects affected by the order.

Note: If you use gauche.collection, you can get the same function by (map-to <vector>
proc vecl vec2 ...).

vector-map-with-index proc vecl vec2 . .. [Function]
Like vector-map, but proc receives the current index as the first argument.
(vector-map-with-index list ’#(a b c d e) ’#(A B C))
= #((0 a A) (1 bB) (2 cC))

This is what SRFI-43 calls vector-map. See Section 11.11 [Vector library (Legacy)], page 676.

Note: If you use gauche.collection, you can get the same function by (map-to-with-index
<vector> proc vecl vec2 ...).

vector-map! proc vecl vec2 ... [Function]
[R7RS vector] For each index i, calls proc with i-th index of vecl vec2 ..., and set the result
back to vecl. The value is calculated up to the minimum length of input vectors.

(rletl v (vector 1 2 3)
(vector-map! ($ + 1 $) v))
= #(2 3 4)

(rletl v (vector 1 2 3 4)
(vector-map! + v ’#(10 20)))
= #(11 22 3 4)

vector-map-with-index! proc vecl vec2 ... [Function]
Like vector-map!, but proc receives the current index as the first argument. This is equiv-
alent to SRFI-43’s vector-map! (see Section 11.11 [Vector library (Legacy)], page 676).

(rletl v (vector ’a ’b ’c)
(vector-map-with-index! list v))
= #((0 a) (1 b) (2 <))

vector-for-each proc vecl vec2 . .. [Function]
[R7RS base| For all i below the minimum length of input vectors, calls proc with i-th elements
of vecl vec2 ..., in increasing order of i.

(vector-for-each print ’#(a b c))
= prints a, b and c.
vector-for-each-with-index proc vecl vec2 ... [Function]
Like vector-for-each, but proc receives the current index in the first argument.

This is equivalent to SRFI-43’s vector-for-each. See Section 11.11 [Vector library
(Legacy)], page 676.
6.13.2 Uniform vectors

Uniform vectors, or homogeneous numeric vectors, are a special type of vectors whose elements
are of the same numeric type. It was introduced originally as srfi-4, revised by srfi-160, and now
a part of R7TRS large (as scheme.vector.@).

The @ part is actually one of the following tags, indicating the type of elements:
u8 Unsigned 8-bit integer - an exact integer between 0 and 255.
s8 Signed 8-bit integer - an exact integer between -128 and 127.
ul6 Unsigned 16-bit integer - an exact integer between 0 and 65535.

Chapter 6: Core library 192

s16 Signed 16-bit integer - an exact integer between -32678 and 32767.

u32 Unsigned 32-bit integer - an exact integer between 0 and 2732 - 1.

s32 Signed 32-bit integer - an exact integer between -(2°31) and 2°31 - 1.

u64d Unsigned 64-bit integer - an exact integer between 0 and 2764 - 1.

s64 Signed 64-bit integer - an exact integer between -(2°63) and 263 - 1.

f16 16-bit floating point number (10-bit mantissa and 5-bit exponent), as inexact real.
£32 IEEE single-precision floating point number as inexact real.

64 IEEE double-precision floating point number as inexact real.

c32 Inexact complex, consists of a pair of 16-bit floating point numbers.

c64 Inexact complex, consists of a pair of IEEE single-precision floating point numbers.
c128 Inexact complex, consists of a pair of IEEE double-precision floating point numbers.

There are some advantages of using uniform vectors over normal (heterogeneous) vectors. It
may be more compact than the normal vectors. Some operations (especially Gauche’s extension
of vector arithmetic operations) can bypass type check and conversion of individual elements,
thus be more efficient. And it is much easier and efficient to communicate with external libraries
that require homogeneous array of numbers; for example, OpenGL binding of Gauche uses
uniform vectors extensively.

Gauche has only a handful primitive operations on uniform vectors as a built-in, but the
gauche.uvector module, or scheme.vector.@ module ((scheme vector @) library in R7RS
programs), provide a complehensive set of operations. See Section 9.37 [Uniform vector library],
page 518, and see Section 10.3.3 [R7RS uniform vectors], page 564.

Uvector classes

<uvector> [Abstract Class]
The base class of uniform vector classes. It inherits <sequence> (see Section 9.30 [Sequence
framework]|, page 477).

<Q@vector> [Builtin Class]
{gauche.uvector} A class for @vector, where @ is one of the uvector tags (u8, s8, ...). It
inherits <uvector>.

It implements sequence protocol (see Section 9.30 [Sequence framework], page 477)), so you
can convert a sequence of real numbers into a uvector using coerce-to, if every elements is
valid for the uvector.

(use gauche.sequence)
(coerce-to <u8vector> ’(1 2 3)) = #u8(1 2 3)

Uvector literals

#u8(n ...) [Reader Syntax]
#s8(n ...) [Reader Syntax]
#ul6(n ...) [Reader Syntax]
#s16(n ...) [Reader Syntax]
#u32(n ...) [Reader Syntax]
#s32(n ...) [Reader Syntax]
#u64(n ...) [Reader Syntax]
#s64(n ...) [Reader Syntax]

Chapter 6: Core library 193

#f16(n ...) [Reader Syntax]
#£32(n ...) [Reader Syntax]
#f64(n ...) [Reader Syntax]
#c32(n ...) [Reader Syntax]
#c64(n ...) [Reader Syntax]
#c128(n ...) [Reader Syntax]

Denotes a literal homogeneous vector.
(Note: R7RS bytevector is the same as u8vector, and can be written as #u8(...).)

#s8(3 -2 4)
#u32(4154 88357 2 323)
#£32(3.14 0.554525 -3.342)

Uvector generic operations

uvector? obj [Function]
Returns #t iff obj is one of the uniform vectors. See below for predicates for specific type of
uvector.

uvector-length uv [Function]
Returns the length (the number of elements) of uvector uv. An error is raised if uv is not a
uvector.

Type specific length procedures are provided in scheme.vector.@ and gauche.uvector (see
Section 9.37 [Uniform vector library], page 518).

To get the size of the binary data the content of the uvector actually occupies, use
uvector-size in gauche.uvector.

uvector-ref uv k :optional fallback [Function]
Generic uvector accessor. Returns k-th element of a uniform vector uv. If k is out-of-range,
fallback is returned if provided, or an error is thrown otherwise.

This is handy to write a generic code that works on any kind of uniform vector, but this
is slower than the specific versions. Gauche’s compiler recognizes the specific versions of
referencer and generate very efficient code for them, while this generic version becomes a
normal procedure call. In inner-loop it can make a big difference.

See below for the type-specific accessors.

(setter uvector-ref) is uvector-set!.

uvector-set! uv k val :optional clamp [Function]
{gauche.uvector} Generic uvector setter. Mutate k-th element of uvector uv with val. An
error is thrown if k is out-of-range, or uv is immutable.
Optional clamp argument specifies the behavior when val is out of valid range. It can be
#f or one of the symbols low, high, or both. See Section 9.37 [Uniform vector library],
page 518, for the meanings of the clamp argument. The default is #£f, which raises an error
on out-of-range value.

Uvector type-specific operations

Type-specific predicates, accessors and modifiers are provided in the core library; all the rest are
in scheme.vector.@ or gauche.uvector (see Section 9.37 [Uniform vector library], page 518).

@vector? obj [Function]
[R7RS vector.@] {gauche.uvector} Returns #t iff obj is a @Qvector, #f otherwise. The @
part is one of the uvector tags (u8 etc.).

Chapter 6: Core library 194

@vector-ref vec k :optional fallback [Function]
[R7RS vector.@] {gauche.uvector} Returns the k-th element of @Qvector vec. The @ part is
one of the uvector tags (u8 etc.).

If the index k is out of the valid range, an error is signaled unless an optional argument
fallback is given; in that case, fallback is returned.
Note that the generic function ref can be used as well, if you import gauche.collection.

(ul6vector-ref ’#ul6(111 222 333) 1) = 222

(use gauche.collection)
(ref ’#ul6(111 222 333) 1) = 222

Setter of @vector-ref is @vector-set!.
(use gauche.uvector)

(define v (u8vector 1 2 3))
(set! (u8vector-ref v 1) 99)

v = #u8(1 99 3)

@vector-set! vec k n :optional clamp [Function]
[R7RS vector.@Q] {gauche.uvector} Sets a number n to the k-th element of @vector vec.
The @ part is one of the uvector tags (u8 etc.).

Optional clamp argument specifies the behavior when n is out of valid range. It can be #£f or
one of the symbols 1low, high, or both. See Section 9.37 [Uniform vector library|, page 518, for
the meanings of the clamp argument. The default is #£, which raises an error on out-of-range
value.
Note that the setter of the generic function ref can be used as well, if you import
gauche.collection.
(let ((v (s32vector -439 852 8933)))
(s32vector-set! v 1 4)
v)
= #s32vector(-439 4 8933)

(use gauche.collection)

(let ((v (s32vector -439 852 8933)))
(set! (ref v 1) 4)
V)

= #s32vector(-439 4 8933)

6.13.3 Bitvectors

A bitvector is a sequence of bits. Each bit can be considered either an exact integer 0/1, or
a boolean values #f/#t. In the former view, it is similar to a uniform vector, but it has the
interface sufficiently different from uvectors and we provided it as a disjoint type.

Gauche provides a handful of procedures in the core. SRFI-178 provides comprehensive
bitvector library. See Section 11.36 [Bitvector library|, page 713, for the details.

<bitvector> [Builtin class]
Bitvector class. Inherits <sequence>, so generic sequence opertaions can be used. (Generic
ref uses bitvector-ref/int, for it matches the external representation of a bitvector.)

#xb. .. [Reader Syntax]
[SRFI-178] A bitvector literal is #* followed by zero or more binary digits 0 or 1.

#%x10010010 ; bitvector of length 8

Chapter 6: Core library 195

#x ; bitvector of length O
A bitvector literal is delimited by one of delimiter character or an EOF.
#%*10010abc ; error
#*x10001(a b c) ; a bitvector, followed by a list
Note: With this rule, #x"..." should be read as a zero-length bitvector followed by a string,

for " is a delimiter. However, Gauche used that syntax for incomplete strings (our overlook!).
Since incomplete string literals is rare (incomplete strings are something that unexpectedly
happen in the practical situation, but not to be used actively), we changed incomplete string
literals to #**"..." since 0.9.10 (see Section 6.11.10 [Incomplete strings|, page 175).

For the backward compatibility, the current version reads #*"..." as an incomplete string. If
the reader lexical mode is warn-legacy (see Section 6.21.7.2 [Reader lexical mode], page 253),
such literals are warned. We’'ll gradually migrate to make #x"..." read as a bytevector
followed by a string.

bit->integer bit [Function]

bit->boolean bit [Function]
[SRFI-178] Many bitvector operations can accept bit as a boolean (#f /#t) or an exact integer
(0/1). These are utility procedures to obtain desired type. The bit argument must be either
one of #f, #t, 0 or 1. They return 0/1 and #f /#t, respectively. An error is signalled if bit is
other than those values.

bitvector b ... [Function]
[SRFI-178] Creates and returns a bitvector whose elements are b Each argument must
be a bit (boolean or 0 or 1).
(bitvector 0 1 0 01 0 0 0 1) = #*010010001
(bitvector) = #x

make-bitvector len :optional init [Function]
[SRFI-178] Creates and returns a bitvector with length len, and all elements being initialized
by init, which must be a bit (boolean or 0 or 1).
If init is omitted, the content of the bitvector is undefined (currently we fill it with 0, but
don’t count on it.)
(make-bitvector 5 #f) = #*x00000
(make-bitvector 7 1) = #x1111111

list->bitvector lis [Function]
[SRFI-178] Lis must be a list of bits (0, 1 or booleans). Returns a bitvector whose elements
consist of elements of Iis.
(list->bitvector ’(#t #f #t #t #f)) = #x10110
(1ist->bitvector (011 1 01 0 1)) = #*x01110101

string->bitvector s [Function]
[SRFI-178] If s is a valid bitvector literal (#*b. .. where b is either 0 or 1), returns a bitvector
represented by the string. Otherwise, #£ is returned.
(string->bitvector "#%x1010001") = #x1010001
(string->bitvector "#%1001020") = #f
Note that this isn’t a sequence-conversion, but rather a conversion from external representa-
tion.

bitvector->string bv [Function)]
[SRFI-178] Convert a bitvector bv to a string representation #x*b. . ..
(bitvector->string #*1001010) = "#%1001010"
Note that this isn’t a sequence-conversion, but rather a conversion to external representation.

Chapter 6: Core library 196

bitvector-ref/int bv k :optional fallback [Function]

bitvector-ref/bool bv k :optional fallback [Function]
[SRFI-178+] Retrieves the k-th bit of a bitvector bv as an integer or a boolean value, respec-
tively. If k is out of range, fallback is returned if it is given, or an error is raised otherwise.
The fallback argument is Gauche’s extension.

(bitvector-ref/int #*1010001 0) = 1
(bitvector-ref/bool #*x1010001 0) = #t

If you use a universal accessor ref/~, it returns the bit value as an integer (see Section 6.15.2
[Universal accessor|, page 209).

(~ #%11001001 1) = 1

bitvector-set! bv k bit [Function]
[SRFI-178] Sets the k-th bit of a bitvector bv with bit, which must be either one of 0, 1, #f
or #t. An error is raised if k is out of range.

This procedure is set as the setter of bitvector-ref/int and bitvector-ref/bool. Since
a bitvector is a sequence, you can also use (setter ref)/(setter ™):

(rletl z (make-bitvector 5 0)
(set! (7 z 2) #t))
= #00100

bitvector-copy bv :optional start end [Function]
[SRFI-178] Returns a copy of a bitvector bv. If optional start and end indexes are given, the
copy is limited in that range, where start is inclusive and end is exclusive.

(bitvector-copy #%101001000 3) = #*001000
(bitvector-copy #%100101000 2 7) = #x*01010

bitvector-copy! target tstart src :optional sstart send [Function]
[SRFI-178] Copy a bitvector src into a mutable bitvector target starting from tstart, mutating
target. Optional sstart and send delimits the range in src.

(rletl v (make-bitvector 10 0)
(bitvector-copy! v 3 #%x101101110 2 6))
= #x0001101000

6.13.4 Weak vectors

A weak pointer is a reference to an object that doesn’t prevent the object from being garbage-
collected. Gauche provides weak pointers as a weak vector object. A weak vector is like a vector
of objects, except each object can be garbage collected if it is not referenced from objects other
than weak vectors. If the object is collected, the entry of the weak vector is replaced for #f.

gosh> (define v (make-weak-vector 1))
v

gosh> (weak-vector-ref v 0)

#1

gosh> (weak-vector-set! v 0 (comns 1 1))
#<undef>

gosh> (weak-vector-ref v 0)

(1.1

gosh> (gc)

#<undef>

gosh> (gc)

#<undef>

gosh> (weak-vector-ref v 0)

Chapter 6: Core library 197

#f
See Section 10.3.17 [R7RS ephemerons], page 600, for R7TRS-large way of weak pointers.

<weak-vector> [Builtin Class]
The weak vector class. Inherits <sequence> and <collection> so you can
use gauche.collection (see Section 9.5 [Collection framework], page 372) and
gauche.sequence (see Section 9.30 [Sequence framework], page 477).

(coerce-to <weak-vector> ’(1 2 3 4))
= a weak vector with four elements

make-weak-vector size [Function]
Creates and returns a weak vector of size size.

weak-vector-length wvec [Function]
Returns the length of a weak vector wvec.

weak-vector-ref wvec k :optional fallback [Function]
Returns k-th element of a weak vector wvec.

By default, weak-vector-ref signals an error if k is negative, or greater than or equal to the
size of wvec. However, if an optional argument fallback is given, it is returned for such case.

If the element has been garbage collected, this procedure returns fallback if it is provided, #£
otherwise.

With gauche.sequence module, you can also use a method ref.

weak-vector-set! wvec k obj [Function]
Sets k-th element of the weak vector wvec to obj. It is an error if k is negative or greater
than or equal to the size of wec.

6.14 Dictionaries

A dictionary is a data structure that associates key to value. Gauche provides hashtables (see
Section 6.14.1 [Hashtables], page 197) and treemaps (see Section 6.14.2 [Treemaps|, page 203) as
the built-in dictionaries. Some additional libraries provide more dictionary-type data structures.

A generic interface is defined as a dictionary framework (see Section 9.9 [Dictionary frame-
work], page 396), by which you can use dictionaries without knowing its details.

R7RS also defines an abstract dictionary interface as mapping; see Section 10.3.20 [R7RS
mappings|, page 613, for the details.

6.14.1 Hashtables

R7RS-large defines hashtable (scheme.hash-table module, see Section 10.3.7 [R7RS hash ta-
bles], page 580) but its API is not completely consistent with Gauche’s original hashtables and
other native APIs.

Rather than mixing different flavor of APIs, we keep Gauche’s native API consistent, and
provide R7RS procedures that are inconsistent with aliases—specifically, those procedures are

suffixed with -r7 in gauche module. For portable programs, you can import scheme.hash-table
to get R7TRS names.

<hash-table> [Builtin Class]
Hash table class. Inherits <collection> and <dictionary>.

Gauche doesn’t provide immutable hash tables for now. (If you need immutable maps, see
Section 12.15 [Immutable map|, page 766).

Chapter 6: Core library 198

Hash table properties

hash-table? obj [Function]
[R7RS hash-table] Returns #t iff obj is a hash table.
hash-table-mutable? ht [Function]

[R7RS hash-table] Returns #t iff a hash table ht is mutable. Gauche doesn’t have immutable
hash tables, so this procedure always returns #t for any hash tables.

hash-table-comparator ht [Function]
Returns a comparator used in the hashtable ht.

hash-table-type ht [Function]
This is an old API, superseded by hash-table-comparator.

Returns one of symbols eq?, eqv?, equal?, string="7, general, indicating the type of the
hash table ht.

hash-table-num-entries ht [Function]
hash-table-size ht [Function]
[R7RS hash-table] Return the number of entries in the hash table ht. R7RS name is

hash-table-size.
Hash table constructors and converters

make-hash-table :optional comparator [Function]
[R7RS+ hash-table] Creates a hash table. The comparator argument specifies key equality
and hash function using a comparator (see Section 6.2.4 [Basic comparators], page 112). If
omitted, eq-comparator is used. Note that in R7TRS, comparator argument can’t be omitted.

As Gauche’s extension, the comparator argument can also be one of the symbols eq?,
eqv?, equal? or string=7. If it is one of those symbols, eq-comparator, eqv-comparator,
equal-comparator and string-comparator will be used, respectively.

The comparator must have hash function, of course. See Section 6.2.3 [Hashing], page 109, for
the built-in hash functions. In general, comparators derived from other comparators having
hash functions also have appropriate hash functions.

hash-table-from-pairs comparator key&value . . . [Function]
Constructs and returns a hash table from given list of arguments. The comparator argument
is the same as of make-hash-table. Each key&value must be a pair, and its car is used as
a key and its cdr is used as a value.

Note: This is called hash-table by 0.9.5. R7RS introduced a procedure with the same
name, but different interface. We see R7TRS version makes more sense, so we’ll eventually
switch to it, but the transition will take long time. The R7RS interface is available as
hash-table-r7, and we urge you to use it in the new code, and replace existing hash-table
with hash-table-from-pairs.
(hash-table-from-pairs ’eq? ’(a . 1) (b . 2))
(rletl h (make-hash-table ’eq?)
(hash-table-put! h ’a 1)
(hash-table-put! h ’b 2))

hash-table comparator key&value . . . [Function]
An alias of hash-table-from-pairs above. R7RS introduced the same name procedure with
different interface (see hash-table-r7 below), and we’d like to switch to it in future. For
now, use either hash-table-from-pairs or hash-table-r7, or import scheme.hash-table
and write in R7TRS.

Chapter 6: Core library 199

hash-table-r7 comparator args . .. [Function]
Create and returns a hash table using comparator. The args . .. are the contents, alternating
keys and values.

This is defined as hash-table in R7RS scheme.hash-table (see Section 10.3.7 [R7RS hash
tables], page 580).
(hash-table-r7 ’eq? ’a 1 ’b 2)
(rletl h (make-hash-table ’eq?)

(hash-table-put! h ’a 1)

(hash-table-put! h ’b 2))
Note: An R7RS compliant implementation of hash-table may return an immutable hash
table. Since Gauche doesn’t have immutable hash tables (we have immutable maps instead;
see Section 12.15 [Immutable map], page 766), we return mutable hash tables. However, the
portable program should refrain from mutating the returned hash tables.

hash-table-unfold p f g seed comparator :rest args [Function]
[R7RS hash-table] Constructs and returns a new hash table with those repetitive steps. Each
iteration keeps the current seed value, whose initial value is seed.

1. Apply a stop predicate p to the current seed value. If it returns a true value, stop.

2. Apply a value producer f to the current seed value. It must return two values, which
are used as a key and the corresponding value, of the hash table.

3. Apply a next procedure g to the current seed value. The value it returns becomes the
next seed value.

hash-table-copy ht :optional mutable? [Function]
[R7RS hash-table] Returns a new copy of a hash table ht.

R7RS defines this procedure to return an immutable hash table if the implementation sup-
ports one, unless the optional mutable? argument is provided and not false. Gauche doesn’t
have immutable hash tables so it ignores the optional argument and always returns a mutable
hash table. But when you write a portable programs, keep it in mind.

hash-table-empty-copy ht [Function]
[R7RS hash-table] Returns a new mutable empty hash table that has the same properties as
the given hash table ht.

alist->hash-table alist :optional comparator [Function]
[R7TRS+ hash-table] Creates and returns a hash table that has entries of each element in alist,
using its car as the key and its cdr as the value. The comparator argument is the same as in
make-hash-table. The default value of comparator is eq-comparator.

R7RS doesn’t allow to omit comparator.

hash-table->alist hash-table [Function]
[R7RS hash-table]

(hash-table-map h cons)
Hash table lookup and mutation

hash-table-get ht key :optional default [Function]
Search key from a hash table ht, and returns its value if found. If the key is not found in the
table and default is given, it is returned. Otherwise an error is signaled.

hash-table-put! ht key value [Function]
Puts a key key with a value value to the hash table ht.

Chapter 6: Core library 200

ref (ht <hash-table>) key :optional default [Method]
(setter ref) (ht <hash-table>) key value [Method]
Method versions of hash-table-get and hash-table-put!.

hash-table-ref ht key :optional failure success [Function]
[R7RS hash-table] This is R7RS way to look up a hash table.

Look up a value associated to the key in the table ht, then pass it to a procedure success,
and returns its value. If success is omitted, an identity function is used.

If there’s no association for key in ht, a thunk failure is called and its result is returned. The
default value of failure throws an error.

It is more general than Gauche’s hash-table-get, but if you need to simply return a fallback
value in case of failure, you need to wrap it with a clojure, which is annoying. In R7RS, you
can use hash-table-ref/default below.

hash-table-ref/default ht key default [Function]
[R7RS hash-table] Looks up key in a hash table ht and returns the associated value. If there’s
no key in the table, returns default.

This is same as Gauche’s hash-table-get, except that default is not optional. We provide
both, for hash-table-get is short and handy.

hash-table-set! ht args ... [Function]
[R7RS hash-table] This is R7RS version to put associations into a hash table. The args ...
is a list of alternating keys and values; so, unlike Gauche’s hash-table-put!, you can insert
more than one associations at once. It is an error if args ... have odd number of arguments.

(hash-table-set! ht ’a 1 ’b 2)

(begin (hash-table-put! ht ’a 1)
(hash-table-put! ht ’b 2))

hash-table-intern!-r7 ht key failure [Function]
This is defined in R7RS as hash-table-intern!. We add -r7 suffix to remind that it takes
a failure thunk, which is consistent with R7RS hash-table interface but not Gauche’s way.
Lookup key in ht. If there’s already an entry, it just returns the value. Otherwise, it calls a
thunk failure, and insert the association of key and the return value of failure into ht, and
returns the value.

hash-table-exists? ht key [Function]
hash-table-contains? ht key [Function]
[R7RS hash-table] Returns #t if a hash table ht has a key key.

R7RS name is hash-table-contains?.

hash-table-delete! ht key [Function]
Deletes an entry that has a key key from the hash table ht. Returns #t if the entry has exist,
or #f if the entry hasn’t exist. The same function is called hash-table-remove! in STk
(except that it returns an undefined value); I use ‘delete’ for consistency to SRFI-1, SRFI-13
and other parts of the libraries.
Note: This is different from R7RS hash-table-delete!, so we provide R7TRS interface with
an alias hash-table-delete!-r7.

hash-table-delete!-r7 ht key . .. [Function]
Delets entries that have key ... from the hash table ht. The key which isn’t in ht has no
effect. Returns the number of entries actually deleted.
This is called hash-table-delete! in R7RS, and so as in scheme.hash-table. We provide
this under different name, for Gauche’s hash-table-delete! returns a boolean value.

Chapter 6: Core library 201

hash-table-clear! ht [Function]
[R7RS hash-table] Removes all entries in the hash table ht.

hash-table-push! ht key value [Function]
Conses value to the existing value for the key key in the hash table ht and makes it the new
value for key. If there’s no entry for key, an entry is created with the value (1ist value).

Works the same as the following code, except that this function only looks up the key once,
thus it’s more efficient.

(hash-table-put! ht key
(cons value (hash-table-get ht key ’())))

hash-table-pop! ht key :optional default [Function]
Looks for the value for the key key in the hash table ht. If found and it is a pair, replaces the
value for its cdr and returns car of the original value. If no entry for key is in the table, or
the value is not a pair, the table is not modified and the procedure returns default if given,
or signals an error otherwise.

During the operation the key is looked for only once, thus runs efficiently.

Note: R7RS has hash-table-pop! but its totally different. We provide R7RS version as an
alias hash-table-pop!-r7

hash-table-pop!-r7 ht [Function]
Removes one arbitrary entry from ht, and returns the removed entry’s key and value as two
values. If ht is empty, an error is thrown.

This is called hash-table-pop! in R7RS, and so as in scheme.hash-table.

hash-table-update! ht key proc :optional default [Function]
A more general version of hash-table-push! etc. It works basically as the following code
piece, except that the lookup of key is only done once.

(let ((tmp (proc (hash-table-get ht key default))))
(hash-table-put! ht key tmp)
tmp)

For example, when you use a hash table to count the occurrences of items, the following
line is suffice to increment the counter of the item, regardless of whether item has already
appeared or not.

(hash-table-update! ht item (cut + 1 <>) 0))

R7RS provides hash-table-update! with different interface, so we provide R7RS version as
an alias hash-table-update!-r7.

hash-table-update!-r7 ht key updater :optional failure success [Function]
This is R7RS version of hash-table-update!. With no optional arguments, it works like
Gauche’s hash-table-update!. But in practice you often needs to specify the behavior when
key hasn’t been in ht, in which case R7TRS differs from Gauche.

The R7RS version works like this but potentially more efficiently:
(hash-table-put! ht key (updater (hash-table-ref ht key failure success)))|]
hash-table-update!/default ht key updater default [Function]

[R7RS hash-table] This is the same as Gauche’s hash-table-default!, except that the
default value can’t be omitted.

Chapter 6: Core library 202

Hash table scanners

hash-table-for-each ht proc [Function]

hash-table-map ht proc [Function]
A procedure proc is called with two arguments, a key and its associated value, over all the
entries in the hash table ht.

hash-table-fold ht kons knil [Function]
For all entries in the hash table ht, a procedure kons is called with three arguments; a key, its
associated value, and the previous return value of kons. The first call of kons receives knil as
the third argument. The return value of the last call of kons is returned from hash-table-
fold.

hash-table-find ht pred :optional failure [Function]
Apply pred with each key and value in the hash table ht. Once pred returns a true value,
that return value is immediately returned from hash-table-find. If no key-value satisfies
pred, a thunk failure is invoked and its result is returned. If failure is omitted, (lambda ()
#f) is assumed.

Note: The convention starting from srfi-1 is that *-find returns an item in the collection
that satisfy the predicate, while *-any returns a non-false value the predicate returns. SRFI-
125 broke the convention. The justification given in SRFI-125 discussion was that the “any”
semantics is strictly upper-compatible to the “find” semantics so we can combine two. So
far, though, SRFI-125 is the only exception of this convention.

;; Find if hash tables ha and hb has a common key.
(hash-table-find ha ("[k v] (hash-table-exists? hb k)))

hash-table-keys ht [Function]
hash-table-values ht [Function]
Returns all the keys or values of hash table ht in a list, respectively.

Hash table as sets

hash-table-compare-as-sets htl ht2 :optional value=? fallback [Function]
A hash table can be viewed as a set of pairs of key and value. This procedure compares two
hash tables ht1 and ht2 as such sets.

The key comparators of two tables must match (in terms of equal? of the comparators).
Otherwise, an error is signaled.

Two elements of the set are equal to each other iff their keys match with the equality predicate
of the key comparator, and their values match with value=? procedure. If omitted, equal?
is used for value=?

There can be four cases.
e If htl is a pure subset of ht2, returns -1 (ht1 is smaller than ht2).
e If ht2 is a pure subset of htl, returns 1 (htl is greater than ht2).
e If htl and ht2 contains exactly the same elements, returns 0 (htl equals to ht2).

e Neither htl nor ht2 is a subset of another. In this case, fallback is returned if it is given,
or an error is thrown.

hash-table=7? value-cmpr htl ht2 [Function]
[R7RS hash-table] This also compares two hash tables ht1 and ht2 as sets, and returns true
iff two are the same. That is, every element in htl is also in ht2 and vice versa.

Chapter 6: Core library 203

Two element are the same iff their keys are the same in terms of the equality predicate of
the tables’ key comparator, and their values are the same in terms of the equality predicate
of a comparator value-cmpr.

It is an error if htl and ht2 has different key comparators. See also hash-table-compare-
as-sets above.

hash-table-union! htl ht2 [Function]
hash-table-intersection! htl ht2 [Function]
hash-table-difference! htl ht2 [Function]
hash-table-xor! htl ht2 [Function]

[R7RS hash-table] Perform set operations on two hashtables ht1 and ht2, and modify htl to
store the result. Note that these procedures only look at the keys for operation; if the values
of the same key differ between ht1 and ht2, the value in htl is taken.

e The union operation picks each entry that is in at least one of htl or ht2.

e The intersection operation picks each entry that is both in ht1 and ht2.

e The difference operation picks each entry that is in ht1 but not in ht2.

e The xor operation picks each entry that is in only one of htl or ht2, but not in both.

6.14.2 Treemaps

<tree-map> [Builtin Class]
Tree map class. Tree maps are a data structure that maps key objects to value objects. It’s
like hash tables except tree maps uses balanced tree internally. Insertion and lookup is O(log
n).
Unlike hashtables, a tree map keeps the order of the keys, so it is easy to traverse entries
in the order of keys, to find minimum/maximum keys, or to find a key closest to the given
value.

The <tree-map> class inherits <sequence> and <ordered-dictionary>.

make-tree-map :optional comparator [Function]

make-tree-map key=7 key<? [Function]
Creates and returns an instance of <tree-map>. The keys are compared by comparator,
whose default is default-comparator. The comparator must h