math.mt-random
- Mersenne Twister Random number generator ¶Provides a pseudo random number generator (RNG) based on "Mersenne Twister" algorithm developed by Makoto Matsumoto and Takuji Nishimura. It is fast, and has huge period of 2^19937-1. See https://dl.acm.org/citation.cfm?id=272995, for details about the algorithm.
For typical use cases of random number generators,
we recommend to use srfi.27
which is implemented
on top of this module and provides portable API
(see srfi.27
- Sources of Random Bits).
You should use this module directly only when you need
functions that aren’t available through srfi.27
.
{math.mt-random
}
A class to encapsulate the state of Mersenne Twister RNG.
Each instance of this class has its own state, and can be used
as an independent source of random bits if initialized
by individual seed.
{math.mt-random
}
Creates and returns a new <mersenne-twister>
RNG instance.
If seed argument is given, it must be either nonnegative exact
integer, u32vector, or #f
. The key can be any length.
If seed is omitted or #f
, the RNG is initialized to the fixed value,
so that it generates the same sequences of random numbers. If you want
different sequence for each instance, you have to give different seeds
explicitly, or initialize each instance with different seeds using
mt-random-set-seed!
below.
By default, the created RNG is thread-safe; you can call the generator from multiple thread without worrying to break its internal state.
However, if you know you only use it in a single thread, or you use separate mutex and know the generator call is alyways protected, then you can give a true value to private? optional argument to avoid overhead of locking.
(define m (make-mersenne-twister (sys-time))) (mt-random-real m) ⇒ 0.10284287848537865 (mt-random-real m) ⇒ 0.463227748348805 (mt-random-real m) ⇒ 0.8628500643709712 ...
{math.mt-random
}
Sets random seed value seed to the Mersenne Twister RNG (MTRNG) mt.
Seed can be an arbitrary positive exact integer,
or arbitrary length of u32vector (see srfi.4
- Homogeneous vectors).
Internally, MTRNG keeps its state in an array of 624 32-bit integers. If the given seed is small (e.g. fixnum), it can’t create enough variations. Particularly, if the seed is within 32bits, it can be computed by sampling a couple of result from MTRNG. If you want the random sequence harder to predict, prepare your own u32vector seed filled with high-entroby bits.
Note that Mersenne Twister is never intended for cryptograhpy, you shouldn’t use it for security-sensitive purposes.
NB: Up to 0.9.9, when seed is a bignum, we roll our own way to fold it in 32bit integer and then called Mersenne-Twister’s initialization function. It loses the entropy, so we changed it and now all the bits in the bignum is used for the seed.
{math.mt-random
}
Returns the last seed value used to initialize Mersenne Twister RNG mt.
It is either an exact integer or u32vector.
If mt has never been initialized, #<undef>
is returned.
{math.mt-random
}
Retrieves and reinstalls the state of Mersenne Twister RNG mt.
The state is represented by a u32vector of 625 elements. The state
can be stored elsewhere, and then restored to an instance of
<mersenne-twister>
to continue to generate the pseudo random
sequence.
{math.mt-random
}
Returns a random real number between 0.0 and 1.0.
1.0 is not included in the range. Mt-random-real
doesn’t
include 0.0 either, while mt-random-real0
does.
Excluding 0.0 is from the draft SRFI-27.
{math.mt-random
}
Returns a random exact positive integer between 0 and range-1.
Range can be any positive exact integer.
{math.mt-random
}
Fills the given uniform vector by the random numbers.
For mt-random-fill-u32vector!
, the elements are filled
by exact positive integers between 0 and 2^32-1.
For mt-random-fill-f32vector!
and
mt-random-fill-f64vector!
, it is filled by an inexact
real number between 0.0 and 1.0, exclusive.
If you need a bunch of random numbers at once, these are much faster than getting one by one.