
Efficient floating-point number handling for dynamically
typed scripting languages

Shiro Kawai
Scheme Arts, L.L.C.

shiro@schemearts.com

ABSTRACT
Typical implementations of dynamically typed languages
treat floating-point numbers, or flonums, in a “boxed” form,
since those numbers don’t fit in a natural machine word
if a few bits in the word are reserved for type tags. The
näıve implementations allocate every instance of flonums in
the heap, thus incur large overhead on numerically intensive
computations. Compile-time type inference could eliminate
boxing of some flonums, but it would be costly for highly dy-
namic scripting languages, in which a compiler runs every
time a script is executed.

We suggest two modified stack machine architectures that
avoid heap allocations for most intermediate flonums, and
can be relatively easily retrofitted to existing stack-based
VMs. The basic idea is to have an arena for intermedi-
ate flonums that works as a part of extended stack or as
a nursery. Like typical VMs, flonums are tagged pointers
that point to native floating-point numbers, but when a new
flonum is pushed onto the VM’s stack, it actually points to
a native floating-point number placed in the arena. Heap
allocation only occurs when the flonum pointer needs to
be moved to the heap. The two architectures differ in the
strategies to manage the arena.

We implemented and evaluated those strategies in a Scheme
implementation“Gauche.” Both strategies showed 30%-140%
speed up in numerical computation intensive benchmarks,
eliminating 99.8% of heap-allocation of intermediate flon-
ums, with little penalty in non-numerical benchmarks. Pro-
filing showed the speed improvement came from the elimi-
nation of flonum allocation and garbage collection.

1. INTRODUCTION
It is common to use a tagged word to represent an object

in the runtime of dynamically typed languages; most objects
are allocated in the heap and a tagged word holds a pointer
to it, while some frequently used objects, such as small in-
tegers, are directly embedded in a word. The width of the
word is typically chosen to match the ‘natural’ width of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

underlying CPU for the efficiency, i.e. 32 or 64 bits.
Embedding small integers in a tagged word greatly re-

duces generation of garbage and improves performance a
lot, since such numbers are mostly for intermediate results
and need to exist only for short amount of time. This tech-
nique, however, can’t be applied directly to the floating point
numbers, or flonums. IEEE-754 single or double precision
floating point number format is preferred for the efficiency,
but it leaves no room for tag bits.

A näıve approach is to allocate a floating-point number in
the heap and uses a tagged pointer to point to it, just like
other heap-allocated objects. It incurs a large overhead in
computation-intensive programs by allocating and collecting
lots of short-living intermediate flonums.

This problem has been well recognized for long. Dy-
namic language implementations that use separate compi-
lation passes have tried to reduce the overhead by identify-
ing variables that only hold floating point numbers, through
optional type declarations[3], storage analysis[11], or type
inferences[8, 14].

Nevertheless, quite a few popular implementations of“script-
ing languages” are still using the näıve approach1. We sus-
pect it is partly because scripting languages started with
emphasis on rapid development of throw-away programs and
gluing existing components, and performance wasn’t a pri-
ority at first. However, as they have grown to full-fledged
languages and large body of libraries and applications have
written in them, performance has become more important
and most modern scripting language implementations em-
ploy a virtual machine (VM) approach2—program code is
in a source form, and when it is invoked it’s compiled to
VM instructions, then executed on a VM.

This approach yields much better performance than pure
interpreters, but the compilation takes place every time when
the program starts up. It limits the amount of time the
compiler can spend, preventing the implementation from
adopting sophisticated optimization techniques. Spending
whether 100ms or 1s for compilation would make huge dif-
ference in cgi scripts, for example. It is much desired to
develop techniques that avoid heap allocations of floating-

1E.g. Python 2.5.2, Ruby 1.8.7, Perl 5, PHP 5.2.6, and Tcl
8.5.2
2Even if a language begins with a direct interpreter in favor
of the simplicity, it seems inevitable that its core is reimple-
mented by VM when the language lives more than several
years and gets certain user population. Tcl originally started
as an interpreter in 1988, and incorporated a bytecode VM
in 1996[7]. Ruby was initially developed in 1993 as a tree
interpreter and adopted a VM in 2006[10].

point numbers without taxing compilation time.
We faced this issue in the Scheme scripting engine Gauche3,

and addressed it by modifying its VM to avoid flonum alloca-
tions as much as possible. The benchmark shows our tech-
nique is quite effective in numerically-intensive programs,
and otherwise has little impact on other programs. Re-
quired modification are confined to the VM itself, with a
slight modification of a glue-code generator that allows C
functions to be called from Scheme. Some core numerical
calculation routines (implemented in C) are modified for fur-
ther optimization. We believe this technique can be applied
in general to the stack-based dynamically-typed VMs.

In the following sections, we first define our goals and
discuss existing techniques, then describe our approach in
detail, followed by benchmark results and discussions.

2. DESIGN GOALS AND EXISTING TECH-
NIQUES

First, we make our goals clear. The principal goal is to
reduce heap allocation of intermediate flonums. We also
have to consider the following constraints.

Target language: We aim at dynamically typed scripting
languages. We tested our idea in the Scheme imple-
mentation Gauche, although we believe the same tech-
nique can be applied to other scripting language fam-
ilies.

No penalties: The technique should not slow down the ex-
isting programs that don’t use flonums much. Since
scripts are compiled every time they are invoked, our
goal implies we cannot add sophisticated optimizers to
the compiler, such as type inferences[14], [8] or stor-
age use analysis[11]. The technique should also avoid
adding run-time overhead in the paths that are unre-
lated to the flonum operations.

No type declaration: It may be an option to allow an op-
tional type declaration (as offered in Common Lisp),
so that the compiler can use it to optimize flonum al-
locations[3]. Although it is a nice option to have, here
we avoid it, since asking type declarations to speed
up things tends to end up cluttering source code with
declarations4.

There have been several techniques suggested to achieve
similar goals.

One of such techniques is tagged unboxed floating point
numbers, which uses shortened representations of floating
point numbers to put a few tag bits in it. Back in 1987,
Self used 30bit floating-point number with two bits tag to
fit a flonum in a 32bit machine register[2]. More recently,
Jason Evans described a method to “steal” three tag bits
from the exponent field of IEEE double-precision floating
point numbers5. It can preserve 53-bit precision, but lim-
its the exponent range between 2−127 and 2127, assuming
most “usual” instances of flonums that occur in typical ap-
plications fall in this range and thus fit in a single 64-bit

3http://practical-scheme.net/gauche/
4We don’t deny the effectiveness of optional type declara-
tions; they can be adopted orthogonally with the method
we propose here.
5http://www.canonware.com/~ttt/2007/07/tagged-
unboxed-floating-point-numbers.html.

word. Koichi Sasada also implemented a similar but more
sophisticated technique in the Ruby runtime; he took only
one bit from IEEE double, and with clever bit-operations he
kept the overhead of extra type checking small and gained
39%–54% speedup in benchmarks[9].

The advantage of this method is that it won’t add any
overhead to non-flonum operations. On the other hand,
since typical run-time tagging methods don’t allow tag bits
in the middle of a word, extra bit twiddling is required to
extract native floating-point values from the truncated rep-
resentation of flonums.

Another technique is to use invalid floating-point number
bit-patterns (such as NaNs in the IEEE floating point num-
bers)[13]. In IEEE double precision floating point numbers,
NaN is defined as all 1 exponent bits with non-zero man-
tissa, and denormalized numbers is as all 0 exponent bits
with non-zero mantissa. It means there are 252

− 1 bit pat-
terns of both. Even if we set two patterns aside for a quiet
NaN and a signaling NaN, we can use the rest to encode
other objects. It may be possible to take advantage of the
hardware to signal NaNs as a lightweight type dispatching
mechanism. This method requires the hardware’s FPUs and
other libraries to guarantee that they never produce NaN
patterns that can be misinterpreted as other objects.

Both techniques run best on 64bit architectures. They are
applicable to 32bit architectures with IEEE single-precision
floating point numbers, but the loss of exponent range or
the limited number of available bit patterns will be a se-
vere restriction for general-purpose languages. (Using such
restricted floating point numbers might be plausible for the
embedded, special-purpose scripting, however.)

If we give up the idea of squeezing flonums in a machine
word, there are still ways to avoid flonum allocations. Since
we can assume intermediate results are short-lived, we can
set-aside special “floating-point registers” in the VM to keep
those intermediate numbers, avoiding calling heap allocators
and putting a burden on GC. In fact, Jeffrey Mathews re-
ported that adding one floating point register in the ocaml
byte-code VM increased floating-point computation perfor-
mance by 55-72%6. However, doing so requires the com-
piler’s help to emit flonum-specific VM instructions, which
is incompatible with our goal.

Yet dynamically typed languages can still use the idea, by
effectively widening the VM data word sufficiently to hold
floating-point numbers, like the register-based VM of Lua
5 does[4]. It adds overhead when the VM’s data value is
copied around, but in general it results in good benchmark
score in computation-intensive tasks7.

Our technique can be regarded as an extension of the
floating-point register approach, but we apply it to stack
machines instead of register architectures. Furthermore, we
keep the VM data word the same as the underlying CPU
word (either 32bit or 64bit), so it won’t affect the perfor-
mance of non-flonum operations.

3. OUR APPROACH

3.1 Gauche VM
Before going into the details, we explain the Gauche VM

architecture we use as our testbed.

6http://dem.inim.us/ocamlfp/README-FP.html.
7http://shootout.alioth.debian.org/.

SP

ARGP

ENV

CONT

VAL0

VAL1

:
VALn

env frame

env frame

env frame

cont f rame

cont f rame

cont f rame

locals

R e g i s t e r sS t a c k

H e a p

The register ENV and CONT point to the head of the
chain of environment frames (env frames) and con-
tinuation frames (cont frames), respectively. Env
and cont frames may be on the stack or in the heap.
Argument register ARGP keeps the bottom of inter-
mediate local values on the stack. VAL0 through
VALn holds the results of the most recent operation
(VAL1... are used for multiple return values).

Figure 1: Gauche VM architecture

Gauche VM is a simple stack machine: It has a VM stack
where environment and continuation frames are pushed. It
also has value registers VAL0 ... where return values of a
procedure are placed (See figure 1).

For a non-tail call, a continuation frame is pushed to the
stack first, then arguments are evaluated and their results
are pushed one by one. Finally the operator is evaluated,
and result is invoked as a procedure, with the arguments on
the stack, which become the topmost environment frame.
When the procedure exits, the continuation frame is popped,
discarding the environment frames above it altogether.

For a tail call, we start pushing arguments without push-
ing a continuation frame; after evaluating the operator, we
shift the accumulated arguments between ARGP and SP down
to the place just above the previous continuation frame,
overwriting the environment of the current executing pro-
cedure, and jump to the procedure entry. This realizes tail
call optimization[6].

The basic instructions operate between VAL0 and the stack;

for example, the ‘POP’ instruction puts the content of the
location pointed by the stack pointer (SP) into the VAL0 reg-
ister and decrements SP, and ‘PUSH’ puts the value of VAL0
on the location pointed to by SP and increments SP. VAL0
effectively works as the cache of the stack top. It also has
quite a few instructions that transfer data inside stack (e.g.
“take the value of local variable #3 and push it onto the stack
top.”)8

Frequently used operations (e.g. ‘cons’ and ‘+’) have ded-
icated VM instructions. If the core procedures are not rede-
fined by the time the expression is compiled, they are inlined
into those instructions.

When a closure is created, the environment frame chain
is moved to the heap. When a continuation is captured,
the continuation frame chain and the environment frames
pointed from them are moved to the heap. The frames are
also moved to the heap when stack overflow is detected.
Once environment frames and continuation frames are moved
to the heap, they sit there until being GC-ed. Thus, each
frame may be moved at most once.

There are some more registers such as dynamic handler
chains, but we omit them as they don’t affect our discussion
here.

The important invariance is that, except for a handful
known registers, no data in the stack is pointed to from out-
side of the stack. For wider portability and easier integra-
tion with C, Gauche uses a conservative GC. So, in general,
we can’t move around data during GC. However, we can
distinguish real pointers if they are in the VM’s stack and
registers, since we have full control over their contents. The
invariance allows us to adjust all pointers correctly when
data in the stack is moved around.

Since closure creation may trigger copying environment
frames, closure elimination by lambda-lifting improves per-
formance a lot. Gauche’s compiler performs simple-minded
closure optimization in a limited time, and typically con-
verts (possibly mutual) recursion of inner closures into sim-
ple loops.

Gauche VM itself is written in C. Gauche’s compiler is
written in Scheme, and pre-compiled by Gauche itself to an
array of VM instructions.

3.2 Fast Flonum Extension
A flonum is represented as a tagged pointer that points to

an IEEE double-precision floating number (we call it simply
a double from now on). In the original implementation, all
doubles are allocated in the heap. We call such flonums
allocated flonums.

With our suggested method “fast flonum extension”, an
array of doubles are pre-allocated in the VM and serves as
floating-point (fp) registers. When a new flonum is created,
a double is stored in an fp register whenever possible, and
the flonum pointer points to it. We call such flonums register
flonums.

We use one bit in the tag to distinguish two kinds of flon-
ums, as shown in figure 2. When we extract a double, we
can just mask the tag bits in the flonum pointer without
caring whether it is in the heap or in an fp register9.

8Allowing operations to work with not only the stack top
but deep in the stack, we can consider the VM as a sort
of register machine with moving a register window. The
distinction between stack and register VMs is rather vague.
9This doesn’t affect the language semantics, since flonums

If Scheme object’s lower bits are 010, the pointer
points to the location of an fp register. If they are
110, the pointer points to a double allocated in the
heap. Normal type checking is done by looking at
the lower two bits, and value extraction is done by
masking lower three bits, regardless of which one the
flonum representation is.

Figure 2: Two variations of flonums

To keep the invariance that “only known pointers can
point to a movable data”, register flonums are allowed only
in VAL registers or in the VM stack. If a register flonum needs
to be moved to the heap, an IEEE double is allocated in the
heap and the flonum is converted to an allocated flonum.

The key is when and how we move the doubles from an
fp register to the heap. The registers will eventually gets
full and we need to make room for new flonums. If we scan
all pointers to find which fp register is in use, it defeats
the very purpose of fp registers since it is just another GC.
On the other hand, if we give up fp registers too early (e.g.
only if value registers uses fp registers) the benefit of fp
registers diminishes. We also don’t want to use complicated
algorithm to decide which fp register to be flushed.

Based on these considerations, we tested two strategies to
manage fp registers.

3.2.1 Wide-stack
The first strategy is to pair up every stack word with every

fp register, and to make the stack allocated flonums use the
paired fp register. We also add an fp register FPVAL0, to pair
up with VAL0, etc. (See figure 3). Whenever a stack word
is moved to the heap, the content of fp registers pointed to
from the word is also moved to the heap, and the word is ad-
justed to point to the heap-allocated double. This effectively
widens the stack and registers, so we call it the wide-stack
strategy.

Note that it is slightly different from register machines
with wide values like Lua. If we fetch a flonum from a
heap-allocated object, the flonum refers to the heap allo-
cated double; we don’t need to copy the double value into a
fp register.

The advantage of this strategy is that we can straight-
forwardly determine which fp registers are in use, and by
whom—as far as the stack is not full, there’s always an ac-
companying fp register is available. There’s an overhead,
though. Whenever we move a value between stack and VAL0,
shift the stack frame, or when a variable on the stack is set!,
we have to check if the value is a register flonum, and if so,
we have to copy the fp register and adjust the word to point
to the new fp register.

of the same value doesn’t need to be eq? in Scheme.

F P r e g i s t e r b a n k

unused
unused

unused
IEEE double

IEEE doubleregister f lonum

register f lonum
allocated f lonum
other Scheme obj

other Scheme obj

S t a c k

H e a p

VAL0 FPVAL0

IEEE double

register f lonum IEEE double

Value registers and every stack word have corre-
sponding fp register. If a register flonum is placed in
a value register or the stack, it always points to the
corresponding fp register. It is possible that an allo-
cated flonum is put in a value register or the stack,
in which case it points to a heap-allocated double.

Figure 3: Wide-stack strategy

F P r e g i s t e r b a n k

IEEE double
IEEE double

register f lonum

register f lonum
allocated f lonum
other Scheme obj

other Scheme obj

S t a c k

H e a p

VAL0

IEEE double

register f lonum

IEEE double
unused
unused

IEEE double
IEEE double

unused FP register index

A new register flonum uses the fp register pointed by
the unused fp register index. If the fp register bank
gets full, the stack and value registers are scanned
and all the doubles are moved to the heap.

Figure 4: Nursery strategy

3.2.2 Nursery
Another strategy is to use the fp registers as a nursery

of doubles, as shown in figure 4. The VM keeps a pointer
to a next fp register to be used. When a new flonum is
created, the fp register pointed to is used and the pointer
is incremented. When the pointer reaches the end of the fp
register bank we flush fp registers by scanning the stack and
move the live doubles into the heap. Like the wide-stack
strategy, once a double is moved to the heap it will never
moved back to VM registers. In this strategy, the fp register
bank effectively works as a special nursery for doubles10.

The advantage is that we can move the words around the
stack and VM registers freely; only when we move the word

10This can be considered as a specialization of the “Cheney
on the M.T.A.” approach by Henry Baker[1], which uses a
machine stack as a nursery of all objects.

to the heap do we need to check if it is a register flonum.
The overhead depends on how frequent the flushing of fp
registers occurs.

For the sake of benchmark comparisons, we allocate the
same number of fp registers as with the wide-stack strategy,
which is the same as the VM stack size (10000 entries).

We also tried the third strategy that used separate stacks,
one for VM words and another for doubles. However, the
overhead of managing two stack pointers, and of dealing
with the case that one double was pointed to by more than
one flonums, made the strategy much less attractive than
the other two and we dropped it from the options.

3.3 Library interface
Flonum results produced in the VM’s arithmetic oper-

ations are always register flonums. However, that’s not
enough in order to take full advantage of the fp registers:
We also need to consider how this change affects the way
the VM calls C-defined functions (foreign functions).

We can’t pass register flonums to arbitrary foreign func-
tions, since such functions may store flonums in the heap
where the VM is not aware of, and thus impossible to ad-
just when the flonum is converted to an allocated one. An-
other issue is how those foreign functions return flonums: If
a foreign function knows the returned value is received by
the VM, it can use an fp register. However, there’s no gen-
eral way for a foreign function to know if its return values
are directly used by the VM, or received by another foreign
function and may be stored in the heap. We don’t want to
impose large changes in already-existing foreign functions,
yet we want to minimize the use of allocated flonums.

Gauche’s standard foreign-function interface (FFI) relies
on stub code generated from foreign function descriptions,
which describe input and output types of foreign functions.
A stub generator program creates a small C function for
every foreign function that converts the Scheme arguments
to C objects, calls the foreign function, and converts back
the resulting C objects to Scheme objects.

If a foreign function takes C double arguments, or if it
does not take numeric arguments at all, we can safely omit
the process of moving doubles to the heap, since we know
the passed flonums will never be stored in the heap—in the
former case the doubles are immediately extracted, and in
the latter case the flonums are rejected by argument type
checking. Similarly, if a foreign function returns a C double,
the stub generator can create code that places the resulting
double in an fp register. This modification of the stub gen-
erator eliminates checking of flonums pointing fp registers in
majority of the built-in C-defined procedures; it is especially
effective to avoid overhead for calling non-numeric functions.

Numeric foreign functions ask a bit more care; the core
numeric functions need to deal with all types of Scheme
numbers—exact integers, rational numbers, real numbers
and complex numbers—so they aren’t defined to take and
return C doubles. From the stub definitions the stub gener-
ator can’t know whether it can safely pass register flonums
or not.

For this, we introduced a special flag in the foreign func-
tion definition to indicate when the VM could safely pass
the register flonums. Most built-in numeric functions ended
up having the flag. It might have been better to make reg-
ister flonums default, and only indicate the unsafe situa-
tion by a special flag. We didn’t do so because it would’ve

broken backward compatibility and affected existing large
numbers of existing third-party foreign function bindings for
Gauche11.

Gauche’s runtime is intended to be used also as a general
list-processing library from C, so some core numeric func-
tions are provided as a public C API. They don’t know if
they are returning the value to the VM or C-written appli-
cation code, so they can’t use fp registers to return flonums.
We just took a näıve approach here; we prepared two dis-
tinct APIs, one was to be called from the VM, and the other
was from general C code.

To summarize, the changes required to the code to imple-
ment our strategy are almost exclusively in the VM imple-
mentation, the collection of Scheme core numeric functions,
and the stub generator.

4. BENCHMARKS

4.1 Benchmark Programs
We prepared five programs that used floating-point com-

putation intensively (flonum-oriented), and four programs
that did not use floating-point numbers (non-flonum-oriented).
The latter group is to see the impact of the fast flonum exten-
sion to the programs that don’t involve flonum calculation.

A list of flonum-oriented benchmarks is as follows:

simple Just calculates (+ 1.0 2.0 ... 10.0e8) by iter-
ation. It is simple enough that the inner loop runs
purely on the VM (i.e. no calls to the library functions)
and do no allocations when the fast flonum extension
is turned on. That is, its result is basically as good as
our method gets, and can serve a reference point.

gauss Matrix inversion by Gauss-Jordan elimination. A
matrix uses f64vector, a homogeneous numeric vector
as a backing storage. It keeps array of doubles in un-
boxed form. Homogeneous numeric vectors are defined
in SRFI-412.

ray Simple ray tracer program,13 originally written for a
Scheme compiler Stalin, adapted to Gauche.

nbody Physical simulation of planet movement considering
gravity14.

plot Draws graphs of complex transcendental functions. This
is a straightforward port from the code shown in Com-
mon Lisp the Language 2nd Ed.[12], pp. 339–349. It
involves lots of complex number arithmetics. Inter-
nally, a complex number is represented by two dou-
bles. The Scheme code extracts real and imaginary
parts very often.

And this is a list of non-flonum-oriented benchmarks:

ack Ackerman function.

anc2 Puzzle solving.

11A new implementation might find it worth to consider the
idea to make the arguments explicitly marked if it needs
longer extent.

12http://srfi.schemerts.org/srfi-4/
13http://www.ffconsultancy.com/languages/ray_tracer/
14http://shootout.alioth.debian.org/

tak Takeuchi function.

ssax XML parsing. I/O intensive.

We used two platforms to run these benchmarks:

• 32bit Linux/x86 (Pentium 4, 2.0GHz, 2GB RAM, Fe-
dora 8). Gauche VM is compiled by gcc 4.1.2.

• 64bit Linux/x86 64 (Athlon64 X2 3800+, 2GB RAM,
Ubuntu 7.10). Gauche VM is compiled by gcc 4.1.3.

4.2 Result
Table 1 shows the average execution time (arithmetic means)

and speedup compared to the original VM. Figure 5 plots
the relative speed of the two strategies on two architectures.

For flonum-oriented programs, fast flonum extension yielded
30–140% boost in the performance. The two strategies showed
similar performance overall, except the simple benchmark
which showed rather large disparity between 32bit and 64bit
architectures.

Turning to the non-flonum-oriented programs, the wide-
stack strategy tends to incur more overhead than the nursery
strategy. It is understandable since the wide-stack strategy
requires checking register flonums for every operations when
the value is moved in the stack or between the stack and the
value registers. The wide-stack strategy performs exception-
ally bad in the tak benchmark.

Table 2 compares the cumulative number of allocated flon-
ums in the flonum-oriented benchmarks. It clearly shows
the fast flonum extension eliminates almost all flonum al-
locations (more than 99.8%) except plot, in which 96% of
allocations are avoided. The plot program constructs a list
of numbers during calculation, which forces flonums to be
moved to the heap.

Figure 6 shows the time spent in GC and other calcula-
tion, normalized by the execution time on the original VM.
It is based on per-function profile taken by qprof15 on 32bit
machine. For the flonum-oriented benchmarks, it shows that
the speed up shown in the figure 5 did come from elimina-
tion of memory allocation and GC. (Note: The large alloca-
tion/GC time of ack is caused by the stack overflow handler,
which moves live frames to heap).

4.3 Discussion
An interesting observation is that, even in scripting lan-

guages, we can avoid allocating flonums 99.8% of the time
with local modifications in the implementation and no change
in the compiler.

Except for the obvious cases of flonums stored in poly-
morphic containers (such as lists and vectors), almost all
flonum allocations occur only when the Scheme values are
moved from the stack to the heap. This means that generic
storage optimizations (such as better closure optimization
to reduce data spilling from the stack to the heap) directly
reduce flonum allocations altogether; no type-aware data-
flow analysis is needed for flonum allocation optimization.
This is a good news for scripting languages seeking to avoid
longer compilation time.

There is some impact of the fast flonum extension to the
non-flonum-oriented code, although it tends to show in the
micro benchmarks like tak and ack. Particularly, we’ve

15http://www.hpl.hp.com/research/linux/qprof/

known from our experience that tak is extremely sensitive
in how the VM inner loop is compiled to the CPU instruc-
tions, since in the tak benchmark almost all execution time
is consumed within the VM loop. (The ack benchmark has
similar property, but it tends to recurse deeper and to trig-
ger stack overflow handler that moves the stack contents to
the heap. It dilutes the impact of the overhead.)

In general, a few percent difference in micro benchmarks
becomes invisible in the real applications so we don’t worry
much about the overhead. However, the rather large per-
formance degradation of the tak benchmark with the wide-
stack strategy on the 32bit architecture is worth to investi-
gate further.

We turned off the code of the fast flonum extension in
various parts of the VM selectively to see which operations
caused the overhead. It turned out that the two largest
causes of the overhead were the following two cases, both
of which involving an extra mask, test, and jump CPU in-
struction sequence.

• When the value in VAL0 is pushed onto the stack, the
VM needs to check if it is a register flonum pointing
to FPVAL0.

• When the VM retrieves an object from a environment
frame, it needs to check if it is a register flonum.

In the early stage of experiment, we found the wide-strategy
yields much better performance in simple numeric calcula-
tions on 32bit architectures (as shown in the simple bench-
mark). However, the fact that it tends to incur more over-
head in the non-numeric programs makes it much less at-
tractive for adoption.

There is one hazard we learned to watch out. During
the tuning process of the fast flonum extension, we some-
times observed that small change in the VM code could
cause rather big overhead on 32bit architectures. We dis-
assembled the VM code for each change and identified the
cause: In the original VM (and the final versions of the fast
flonum extension used for benchmarks), the pointer to the
structure keeping the VM state is always kept in %ebp, so
that VM data access is just a single indirection. When the
fast flonum extension is turned on and extra code is inserted,
the pointer to the VM structure can spill out from the CPU
register, making any reference to the VM state a double in-
direction. This spilling couldn’t be prevented by the GCC
extension to specify a machine register to a local variable
explicitly.

It only shows up on the IA32 processors since it has very
few registers. To test whether a value is a register flonum,
the processor needs to extract the lower 3 bits into a CPU
register; if the original value is also needed immediately after
the test, gcc tends to keep both on the CPU registers. When
we have multiple flonums to work on, it’s easy to use up all
available registers. After we’ve noticed this, we try to not
cluster the tests of register flonums so that gcc can keep the
pointer to the VM structure on a register.

5. CONCLUSION
We proposed a fast flonum extension that greatly reduced

heap allocation of intermediate flonums on the stack-based
VM for dynamic languages. It doesn’t involve a sophisti-
cated optimizing compiler, so it is suitable for scripting lan-
guages which cannot afford long compilation time. It also

Table 1: Benchmark results, time and speed up

Program
32bit 64bit

original wide-stack nursery original wide-stack nursery
simple 52.93s 21.77s (2.43) 24.59s (2.15) 29.97s 16.56s (1.81) 15.26s (1.96)
gauss 23.71s 16.05s (1.48) 16.25s (1.46) 16.66s 10.75s (1.55) 10.91s (1.53)
ray 72.59s 44.73s (1.62) 46.00s (1.58) 45.48s 28.91s (1.57) 30.11s (1.51)
nbody 50.82s 36.12s (1.41) 34.89s (1.46) 32.37s 23.20s (1.40) 23.49s (1.38)
plot 11.28s 9.13s (1.24) 8.62s (1.31) 7.59s 6.09s (1.25) 6.23s (1.22)
ack 18.61s 19.73s (0.94) 19.11s (0.97) 13.09s 13.24s (0.99) 13.24s (0.99)
anc2 10.45s 10.95s (0.95) 10.53s (0.99) 7.95s 8.37s (0.95) 8.00s (0.99)
tak 26.87s 30.26s (0.89) 26.81s (1.00) 23.99s 25.85s (0.93) 24.66s (0.97)
ssax 10.65s 11.49s (0.93) 10.63s (1.00) 6.83s 6.80s (1.01) 6.95s (0.98)

 0

 0.5

 1

 1.5

 2

 2.5

si
m

pl
e

ga
us

s

ra
y

n-
bo

dy pl
ot

ac
k

an
c2 ta
k

ss
ax

S
pe

ed
 u

p

wide, 32bit
nursery, 32bit

wide, 64bit
nursery, 64bit

Figure 5: Speed-up comparison

Table 2: Cumulative number of allocated flonums

Program Original Wide-stack Nursery
simple 200,000,006 10 40,008
gauss 65,448,341 20,051 28,245
ray 201,458,039 162,346 226,902
nbody 106,501,178 162 5,362
plot 19,923,144 782,252 787,891

 0

 0.5

 1

 1.5

si
m

pl
e

ga
us

s

ra
y

n-
bo

dy pl
ot

ac
k

an
c2 ta

k

ss
ax

R
el

at
iv

e
tim

e
(n

or
m

al
iz

ed
 b

y
th

e
or

ig
in

al
)

other calculation
allocation and GC

o
r
i
g
i
n
a
l

w
i
d
e

n
u
r
s
e
r
y

o
r
i
g
i
n
a
l

w
i
d
e

n
u
r
s
e
r
y

o
r
i
g
i
n
a
l

w
i
d
e

n
u
r
s
e
r
y

o
r
i
g
i
n
a
l

w
i
d
e

n
u
r
s
e
r
y

o
r
i
g
i
n
a
l

w
i
d
e

n
u
r
s
e
r
y

o
r
i
g
i
n
a
l

w
i
d
e

n
u
r
s
e
r
y

o
r
i
g
i
n
a
l

w
i
d
e

n
u
r
s
e
r
y

o
r
i
g
i
n
a
l

w
i
d
e

n
u
r
s
e
r
y

o
r
i
g
i
n
a
l

w
i
d
e

n
u
r
s
e
r
y

Figure 6: Time spent in allocation/GC and other calculation

only requires local changes in the runtime module—the VM
itself and an FFI stub generator, plus small extra anno-
tations in the FFI definitions—so that it can be relatively
easily retrofitted to the existing implementations.

We implemented and benchmarked the proposed tech-
niques on the Scheme scripting engine Gauche. The result
showed that it virtually eliminated allocations from inter-
mediate flonums, except the case that they were stored in
polymorphic containers. The performance improvement de-
pended on how much such allocations consumed in the ex-
ecution time in the original implementation—in Gauche it
turned out the cost was about 25% to 50% in the numerically
extensive programs. Eliminating them was a big win.

The overhead of extra checking to manage fp registers is
a few percent at most in the the nursery strategy, making it
feasible for real applications. The wide-stack strategy shows
higher peak performance, but it also shows higher overhead
in particular situations and we find it less attractive.

For a future extension, an interesting possibility is to ap-
ply this technique to 64bit integers. Gauche VM supports
unboxed integers (fixnums) up to two bits less than the
width of the machine word. If an integer doesn’t fit in it, it
becomes a bignum which is allocated in the heap. We can
use 64-bit VM fp registers to keep 64-bit integers as well, so
that the programs that work on full-width integers can also
avoid allocations.

Reducing flonum allocations benefits not only to overall
computation performance, but it also makes an implemen-
tation easier to be adopted as an embedded scripting en-

gine for interactive and semi-realtime applications, such as
videogames. Using a powerful scripting engine in realtime
computer graphics applications helps the content production
tremendously[5], but the delay or the pause from garbage
collection cycles have been a problem. Although we’ve tried
not to allocate in the inner loop, GC has been unavoidable
if flonums are heap allocated. Now, it becomes possible to
write mostly alloc-free inner loop.

6. REFERENCES
[1] H. G. Baker. Cons should not cons its arguments, part

ii: Cheney on the m.t.a. ACM Sigplan Notices,
30(9):17–20, September 1995.

[2] C. Chambers, D. Ungar, and E. Lee. An efficient
implementation of self a dynamically-typed
object-oriented language based on prototypes. In
OOPSLA ’89: Conference proceedings on
Object-oriented programming systems, languages and
applications, pages 49–70, New York, NY, USA, 1989.
ACM.

[3] R. J. Fateman, K. A. Broughan, D. K. Willcock, and
D. Rettig. Fast floating-point processing in common
lisp. ACM Trans. on Mathematical Software,
21(1):26–62, March 1995.

[4] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes.
The implementation of lua 5.0. Journal of Universal
Computer Science, 11(7):1159–1176, 2005.

[5] S. Kawai. Gluing things together - scheme in the

real-time CG content production. In Proceedings of
ILC2002, the International Lisp Conference, pages
342–348, 2002.

[6] R. Kelsey. Tail-recursive stack disciplines for an
interpreter. NU-CCS-93-03, March 1993.

[7] B. Lewis. An on-the-fly bytecode compiler for tcl. In
Proc. 4th Intl. Tcl/Tk Workshop, pages 103–114.
USENIX, 1996.

[8] T. Lindahl and K. Sagonas. Unboxed compilation of
floating point arithmetic in a dynamically typed
language environment. In Implementation of
Functional Languages: Proc. of the 14th International
Workshop number 2670 in LNCS, pages 134–149.
Springer, September 2002.

[9] K. Sasada. A lightweight representation of
floating-point numbers on ruby interpreter. In
Proceedings of the workshop of programming and
programming languages (PPL2008), Sendai, Japan,
March 2008.

[10] K. Sasada, Y. Matsumoto, A. Maeda, and M. Namiki.
YARV: Yet another rubyvm. the implementation and
evaluation. IPSJ Transaction on Programming,
47(SIG 2 (PRO 28)):57–73, February 2006.

[11] M. Serrano and M. Feeley. Storage use analysis and its
applications. In Proc. ICFP ’96: the first ACM
SIGPLAN international conference on Functional
programming, pages 50–61, 1996.

[12] G. L. Steele, editor. Common Lisp: the Language, 2nd
Edition. Digital Press, 1990.

[13] K. Umemura. Floating-point number lisp.
Software—Practice and Expecience, 21(10):1015–1026,
October 1991.

[14] W. F. Wong. Optimizing floating point operations in
scheme. Computer Languages, 25(2):89–102, 1999.

