Multibyte character string processing in Scheme

Shiro Kawai
Scheme Arts, L.L.C.

shiro@schemearts.com

ABSTRACT

Nowadays, handling a large character set in application pro-
grams is a common requirement, and general-purpose pro-
gramming languages are expected to support it naturally
and efficiently.

The start line of supporting a large number of characters is
to allocate more than one byte per character. However, it
opens a can of worm. Actually, there are too many external
factors that affect design decisions, and the discussion on
this topic tends to diverge.

In this paper we break down the problem, and consider three
issues. What are the advantages and disadvantages of two
general implementation strategies, wide character and mult:-
byte strings? To what extent should the language support
for the character encoding issue? And what do we need to
write a portable string manipulation routines that work well
on both wide-character and multibyte implementations?

We are particularly interested in multibyte implementation,
for it requires a slightly different way of programming from
the traditional “string is an array of characters” model. We
show that it is indeed possible to implement a multibyte
string processing layer that works efficiently, and suggest
several Scheme library APIs that allow a programmer to
take advantage of these optimized implementations of multi-
byte string routines.

1. INTRODUCTION

A character string is traditionally considered as a simple
array of characters, which was practically equivalent to a
simple array of bytes until recently. However, it has be-
come common for real-world applications to deal with a large
character set, and the modern programming languages are
expected to support it.

Some programming languages, including Java, specifies par-
ticular character set and encoding for internal processing.

To be appeared in the Proceedings of Second International Lisp Conference,
October 2003, New York, NY.

Some other languages don’t specify particular encoding, but
impose certain restrictions for the underlying character/string
implementation, such that a character is represented by 16-
bits, for example[2]. In Common Lisp, a string is a subtype
of an array, so the n-th character in a string is expected
to be accessed in O(1) time, while it does not restrict the
actual representation of a character object.

The Scheme standard[4] doesn’t say anything about the
underlying implementation of a string except it is a se-
quence of characters. This allows an implementor to choose
whichever internal representation that satisfies the imple-
mentation’s target criteria. Since the optimal internal repre-
sentation may differ among different applications, this free-
dom of choice is an advantage.

There is a pitfall, though. It is tempting to write a code that
does “optimization” based on an assumption of underlying
representation of a string. If the code is intended to be
portable, such optimization should be carefully avoided.

We are developing a Scheme implementation called Gauche,
which is aiming at “scripting in daily life”, for example,
to process the chores like writing a throw-away program to
scan log files easily. It is vitally important for us to handle a
large character set natively, without burdening programmers
by concerns like their characters being chopped up in the
middle of string operations. We have chosen a multibyte
string as the internal representation, in which each character
in a string may use variable number of octets. Using Gauche,
we noticed some patterns of string manipulation that work
well for both multibyte strings and simple character arrays,
while some patterns not.

In this paper, we discuss the implementation strategies of
large character sets in the programming languages, partic-
ularly focusing on the comparison of multibyte strings and
simple character arrays, and show a pattern that works in-
dependent from the underlying implementation.

In the next section we briefly explains the general archi-
tecture of multilingual applications, and discuss the extent
that programming language should support them. In the fol-
lowing section, we discuss advantages and disadvantages of
using wide-character and multibyte string as internal rep-
resentation, and the issues in character encoding conver-
sion. Then we explain the actual implementation strategy of
Gauche. In the final section, we discuss a coding convention

of string handling which works well for both wide-character
strings and multibyte strings, and conclude the paper.

2. ARCHITECTURE OF MULTILINGUAL
APPLICATIONS

2.1 Handling large character sets

Adding support of a large character set to the language im-
plementation is more than just allocating more bytes for
each character. There can be more than one ways to repre-
sent a character. The rule to represent each character in a
certain character set is called Character Encoding Scheme,
or CES, and it is very common for an application program
to deal with more than one CES.

Some CES’s use variable number of bytes to represent each
character (multibyte format), while other CES’s use fixed
width characters (wide character format).

It is usually simpler if you stick to use single encoding (in-
ternal encoding) inside the application. and convert from/to
the encoding required by outside world (ezternal encoding)
when you do I/O or external library calls.

Most of external data exist in the multibyte character for-
mat. It is usually more compact than wide characters, and
compatible to the huge amount of legacy data. Furthermore,
multibyte character format doesn’t depend on the byte-order
of the architecture.

On the other hand, it is debatable whether internal encoding
should use multibyte or wide-character format. Both has
its own advantages and disadvantages. We’ll discuss it in
details in Section 3.

2.2 Layers of large-character set support

The difficult part of supporting large character set in a pro-
gramming language is to decide where to draw a line. Large
character set support can be arbitrary complex matter, if
you start thinking language-sensitive character manipula-
tion (in some languages it is difficult even to decide what a
character is). On the other hand, you can support minimal
features and shift the burden of complicated stuff to ap-
plication writers. Such implementations are, however, less
attractive nowadays.

For our discussion, it is useful to model the application in
layers, as shown in figure 1.

The bottom layer, binary representation, directly touches
the underlying bitpattern of the characters. Data I/O rou-
tines have to deal with this layer. This layer is also re-
sponsible for converting whatever external encodings to the
internal encoding and vice versa.

The second layer deals with characters and strings as the
data types defined in the programming language. This layer
hides the bitpattern of characters, and provides an abstract
“character” object to the above layers.

Usually the second layer is independent from the context
of natural languages. A character won’t change its seman-
tics in the programming language by whether it is a part

Layer 4: User interaction

Glyph rendering
Input methods

Layer 3: Text processing
Language-dependent operations
Grapheme clusters
Collating elements
Language-sensitive sorting & searching

Layer 2: Character & string processing

Language-independent character/string
operations

Layer 1: Binary representation

CES conversion, CES guessing
Data I/O

Figure 1: layers of multilingual system.

of Japanese text or Chinese text. Note that a character in
this layer may not have one-to-one mapping to what a hu-
man user thinks as a character. So, arbitrary combination
of characters in this layer may make a character string that
doesn’t mean anything, or even isn’t renderable, as a text
in a given natural language. Nevertheless, they are legal as
a string in this layer.

On top of the characters and strings the programming lan-
guage provides, the third layer, text processing, can be con-
structed, which is aware of the natural language context.
This layer deals with grapheme clusters[11] and collating el-
ements[10]. Language-sensitive sorting and searching has to
be done in this layer as well.

If an application interacts with a human user, it adds an-
other very complicated layer. Both rendering text using
glyphs and handling input from the user largely depend
on the natural language and context surrounding the text.
However, it is beyond the scope of this paper.

The distinction between character/strings layer (layer 2)
and text layer (layer 3) is important, since implementing
text manipulation routines for all natural languages are ex-
tremely difficult task, if not impossible, thus the support
of text layer may vary greatly among different implemen-
tations. The Unicode consortium, for example, discusses
text processing in great detail[9], but it allows implemen-
tors a choice not to support particular characters and text
processing rules related to it’

This means even if the language standard library provides
the functionalities of the text layer, it is likely that the ap-

plication will not be portable among implementations.

There is another important component which tends to be

'However, if you state you support particular Unicode char-
acters, you have to implement rules described in the Unicode
standard. One convenient way that is often taken is not to
mention supporting particular Unicode characters, but just
say a character can contain certain number of bits (which
happen to be a Unicode in certain cases).

(define s "5 i&")
(display s) ==>5 ig

(display
(string-append
(substring 0 3) "|")) ==>= 2

a character may be
chopped and altered

if the language support
is insufficient

Figure 2: chopped and altered character.

missed in the discussion of large character set support, nev-
ertheless is indispensable in practical applications: code guess-
ing. It is very common that your application doesn’t have
prior knowledge of the encoding of external data, so you need
to find out its encoding. Since many external encodings use
the same binary representation for different purposes, this is
an ill-defined problem. To get a good result, you need some
context about the natural languages you are dealing with,
while the guessing routine itself deals with binary represen-
tation of the data.

Now, the important question for the programming language
implementors is how to realize the second layer abstraction,
so that it will be easy to write the top layers, as well as to
interface efficiently with the bottom layer.

2.3 Required programming language support
Some languages, like C, provide very little in the second
layer and expose underlying representations. From the pro-
grammer’s point of view, however, it is highly desirable that
the language provides the following properties.

2.3.1 A character as an atomic unit

The character abstraction should be an atomic unit, in the
sense that arbitrary combination of those characters will
never produce an “illegal” string that causes a trouble in
the system level.

That is, string-ref always returns a valid character in the
string (if the index is within the range), string-set! never
produces a corrupted string, and string-contains always
returns a valid result. It sounds simple, yet there are lots
of implementations that doesn’t work in this way, annoy-
ing application programmers who have to deal with a large
character set. For example, you can no longer casually trim
a long diagnostic message to fit in a screen (see figure 2), or
can’t search strings to find a match.

To make matter worse, if one routine from a library depends
on those multibyte-unaware functions, the entire library may
become unusable for practical applications. For that reason,
providing different set of “multibyte string API” from the
language’s native string API, should be avoided.

2.3.2 Back door for binary representation

On the other hand, if a language totally abstracts the under-
lying bitpattern of characters away from a programmer, it
becomes impossible for him /her to write an important com-
ponent of application such as CES conversion and guessing
routine.

Although the language implementor can provide those fea-
tures as built-in libraries, there are always the case that the
provided one isn’t enough and an application writer has to
tweak it, or write his/her own?.

3. MULTIBYTE VS WIDE CHARACTERS

One of the biggest design choice for language implementors
is to use whether wide character or multibyte format in the
string representation. It matters because it affects all over
the place of the code, and it’s not easy to switch back and
forth. It has been rich source of debate in the mailing list
and discussion groups of various languages, and each lan-
guage made different choices: Python seems to decide for
wide-character, while Tcl, Perl and Ruby took multibyte.

It is not easy to compare two approaches quantitatively, for
it depends on lots of unknown factors. In this section, we
try to summarize pros and cons of both approaches.

3.1 Wide characters

At the first glance, the obvious advantage of O(1) access
time of wide characters is indispensable. However, It is so
only if you can use “true” wide character representation, in
which all characters are exactly the same length, and 1-to-1
mapping for external representation exists. In practice, it is
not easy.

Unicode seems a good candidate of wide-character represen-
tation, and is indeed adopted by languages like Java. How-
ever, 16bit-a-character format, UTF-16, is no longer fixed-
length since the adoption of surrogate pairs®.

So, if you choose Unicode for wide-character internal rep-
resentation, UCS-4 is the only choice. It seems to waste
a lot of memory, since Unicode will only use up to 21-bits
(U+10FFFF). However, extrapolating the current trend of
increasing memory size and bandwidth, such waste can be
tolerated in favor of O(1) efficiency except special applica-
tions such as portable devices. Besides, it leaves you a room
to extend your character type using extra bits.

There is a bigger problem than the size, however. Currently
large part of external world doesn’t take wide-characters;
legacy libraries, operating system services, and stream I/Os.
It can take very long time for them to support true UCS-
4, since they have to provide double APIs unless everyone
jumps to UCS-4 world at once. It is more likely that libraries
start extending their API to use multibyte format such as

2One of the reason to do so is the incompatibility of conver-
sion table. Also the code guessing algorithm largely depends
on the data set the application deals with.

3The fact that it is rather “special” cases to see those char-
acters doesn'’t justify applications to ignore those cases; if
you do so, your application will suffer for a hard-to-track
problem which appears in rare cases.

UTF-8. And external encodings will likely remain to be
multibyte format, after all.

It means you may end up keep converting internal wide-
character and external multibyte format back and forth.
Not only the overhead may be a problem, but also such
conversion tends to cause so-called round-trip problem, that
a character’s identity isn’t preserved if you convert it to an-
other CES then convert back to the original CES.

Although the round-trip problem occurs regardless of whether
internal encoding is wide-character or multibyte, it is less
likely if you can avoid conversion at all, and multibyte in-
ternal encoding is easier to do so.

A good news for wide-character approach is that we’ll likely
to have extra CPU time and memory bandwidth in near
future, and it can evolve into fat character approach—you
don’t use fixed bitpattern for characters, but treat each char-
acter as an individual object that may contain arbitrary in-
formation. Round-trip problem can be solved if each char-
acter knows where it came from. There are already some
attempt to move to that direction, such as CHISE project®

It should also be noted that wide character or fat charac-
ter string doesn’t need to have O(1) access-time property.
In some languages, such as Haskell or Arc, a string is just
a list of characters, hence has O(n) access-time. Except
that, however, it does share the properties of wide-character
strings. For example, you can still use fast string search al-
gorithms such as Boyer-Moore, and the mutating strings (if
the language ever allows) doesn’t cause so much problems
as in multibyte strings as discussed below.

3.2 Multibyte string

Using multibyte format for internal encoding is to give up
O(1) string access for better interoperability with external
world. If you know you deal with particular external multi-
byte encoding very often, which is common, then having
the same multibyte encoding as internal encoding can elimi-
nate hairy character-conversions. It is also memory-efficient,
which matters for small devices with limited resources.

Whether multibyte format is better choice than wide-character

format or not largely depends on how much you think the
following properties as disadvantages:

e O(n) index-access
e Cost of character boundary identification

e High-cost of mutating strings

The penalty from these disadvantages can be avoided to
certain extent, if the implementor provides a certain set

4 Actually, some functions may not care whether the passed
string is multibyte or just a single-byte sequence. It makes
library authors less eager to provide duplicated functionality
in wide-character format

SCHISE project[8][6] http://www.kanji.zinbun.kyoto-
u.ac.jp/projects/chise/index.html

of higher-level string procedures, and a programmer care-
fully avoids the operations that assume the “character ar-
ray” model of the string.

3.2.1 O(n) access

If you’ve been using indexed string access all the time, O(n)
access may sound unacceptable burden. However, it largely
depends on what type of application you’re writing.

Unless you are writing some complicated text analysis algo-
rithm, typical string access patterns are either:

1. to retrieve sequentially one character at a time, or

2. to extract a part of the string using some searching
library functions, like regular expression matcher or
string-contains in SRFI-13[7].

Sequential access of the string doesn’t need an indexed ac-
cess; all we need is a sort of string iterator, which can
keep the pointer to the current character boundary in the
multibyte string. It doesn’t cost O(n) to retrieve the next
character, and it has advantage over indexed access since
boundary-check is easier.

Some efficient string searching algorithms need operations
such as “skip n characters”, which can be slower if you pro-
ceed character by character. However, with some CES you
may be able to apply those algorithms in byte sequence of
the strings. If the internal encoding is UTF-8, for exam-
ple, you can directly use Boyer-Moore algorithm on binary
representation of the string. Regular-expression matching
engine can also be optimized to operate byte stream when-
ever possible. The language implementor can provide a set
of string searching primitives that take advantage of the un-
derlying CES, so that users of the library don’t always need
to pay for O(n) cost.

O(n) may become a big problem if you are dealing with
very large strings. In the structured-document world (read
‘XML), it is less likely that you see one megabyte of a sin-
gle chunk of string. If you do need to handle such strings,
however, that may be a sign that what you really need is
a data structure like a vector. For example, you may have
a long DNA sequence represented by a string and want to
hop around in it by indexes; then it may be suitable to use
u8vector of SRFI-4 instead, for it does provide guaranteed
O(1) access and packed byte array, unlike a sort of opaque
structure of strings.

3.2.2 Character boundary
This effect isn’t visible for the programmers that uses the
language, but matters for implementors.

UTF-8 has a nice property that you can tell whether a byte
in the string is a beginning of a multibyte character or not
without looking at other bytes in the string. Some other
multibyte CES, such as Shift-JIS or EUC (packed format),
doesn’t have such a property. They have certain bytes which
can be both the first byte and the following byte of a multi-
byte character.

Original text A

B &

[a6 cb|bb bblcb at |

EUC-JP

[cb bblbb cb |
ft =

False match

Original text

UTF-8

Original text A

5 &

CES like EUC-JP can produce a legal
sequence from the middle of a character,
possibly yielding a false match.

UTF-8 uses different range of bytes

for the first byte and the trailing bytes,

so no false match can occur even a search
algorithm is applied on the byte sequence
instead of the character sequence

EUC-JP
with leading char

|cba1 |

Inserting a leading character may allow
the same algorithm for EUC-JP.

Figure 3: False match.

This prevents the implementors from using efficient string-
searching algorithms directly on the underlying byte sequence,
since it may yield a false match (figure ??). An awkward
workaround is to insert a “leading character” before every
character. The leading character must differ for any byte
that can be a part of valid multibyte character®.

3.2.3 Mutating strings

What happens if you substitute a character in a multibyte
string for another character, by string-set!, but the two
characters have different number of bytes? You have to re-
allocate the entire string, while keeping the identity of the
string (in eq? sense) before and after mutation.

Generally this leads you to allocate the body of the string
(byte array) separately from the string object itself. When
a string is mutated in the way that it changes the size of
the string, the body is reallocated, the original contents are
copied except the mutated character is substituted, then the
string object is updated to point to the new body.

This sounds terribly inefficient. However, how often you
need to use string-set!? Its most common use is in con-
struction of a string; you first allocate a certain length of
string by make-string, then fill it with one character at a
time. Even when the length of constructing string is un-
known, you can use the allocated string as if it is a buffer,
and chain them together until you finish, then append all
the buffers into a result string.

This kind “optimization” is based on an assumption that
string is a simple array of characters, which is, in fact,
implementation-dependent.

To construct a string sequentially, we already have SRFI-
6’s output string port[1]. SRFI-13 also provides some func-
tional string constructors. The implementor can support
these procedures natively, taking advantage of underlying

50ne possible optimization is to leave characters in ASCII
range as is, and use a leading character for other characters.

representation.

There is a case that you want to mutate a single charac-
ter of a existing string, but it is a special case of generic
string replacing where the original part and the replaced
part happens to be a single character. It isn’t very common
in applications.

If we exclude above cases, the rest of string-set! is really
the cases that use a string as some sort of data structure
where each character have some meaning. Again, vectors or
records might be more suitable for such purpose.

4. CES CONVERSION PROBLEMS

It is better that you can avoid converting encodings when-
ever possible. Not only because it has overhead, but also
because mapping between two CES’s is often ill-defined, re-
sulting a kind of problems that don’t appear in labs but bite
you hard in production environments.

In this section we examine common problems related to code
conversion that implementors have to keep eyes on.

4.1 Where conversion happens

If you have the single internal encoding, the natural place
to implement CES conversion is a port; the other side of
a port is usually an external world, where people speak in
external encoding. However, when you read from the port,
you always get a character in the internal encoding.

To have a CES converter in a port has a big impact on the
implementation of char-ready?.

To be strict, char-ready? should return #t only if the port
has a whole character, so that the subsequent read-char will
never block. However, if the port does a CES conversion,
it can be arbitrary expensive for char-ready? to check if
the available data can be converted to a whole character in
internal encoding.

Suppose that the external encoding is a stateful encoding

converted output
(input port)
-—

incoming data

CES converter <

]

|1b 24 42/1b 28 42[1b 24 42/34 41 ...

escape seq.

escape seq. escape seq.

"

char-ready? has to look ahead up to
this octet to guarantee next read—char

won’t block

Figure 4: char-ready? with CES conversion port.

such as ISO-2022[3] and you are reading from the port. In-
put may contain arbitrary number of escape sequences (it is
unusual, nevertheless it is legal). In order for char-ready?
to find out whether the converter output produces a char-
acter, it needs to lookahead arbitrary amount of input data.
When char-ready? finally finds out the a character is ready,
the data has actually been read4.

Alternatively, char-ready? can just check whatever data
is available at the port endpoint, but not read the data at
all, much like what Unix’s select(2) or poll(2) system call
does. It should work mostly well, for in many cases a chunk
of bytes that represent a character arrive to the port at
once. However, it doesn’t eliminate the possibility of the
subsequent read-char to hang, hence violates R5RS.

There may be another strategy: restrict ports to read from
the internal encoding when it is used as character input.
For other encodings, a port works only with special binary
I/O primitives (like read-byte and write-byte in Com-
mon Lisp, or something like read-block and write-block
to read/write a chunk of binary data), and a separate con-
version procedure does conversion between binary sequences
and character sequences. If the implementation also provide
a “procedural port”, where the user can implement his/her
own port by providing handler procedures, then he/she can
implement a port with conversion on top of such restricted
ports.

It is also required that you can switch the external encod-
ing of the conversion port in some way. It doesn’t need
to support switching between arbitrary encodings—which
may cause a complicated problem if one of the encodings
is stateful—but at least the implementation have to switch
some default CES (which can be ASCII) to other CES. Sup-
pose you are reading an XML document. Before you start
any conversion, you have to read <?xml version="1.0"
encoding="..."> to know what encoding the document is
written in.

4.2 Undefined or illegal sequence

The external world is not a perfect world, and it is very often
that you receive a byte sequence which can’t happen in legal
sequences of supposed external encoding. How to handle
such a sequence may differ depending on what application
wants. There can be three scenarios:

e Signal an error and interrupt the processing.

e Substitute the invalid sequence to other valid character
sequence.

o Silently ignore the invalid sequence and restart conver-
sion from where the valid sequence begins.

It is desirable that the implementation provides some way
to specify a handler for the conversion mechanism so that
the application programmer can choose a suitable strategy.

Note that such handler may want to examine the context
where the illegal input sequence occurs. For example, the
handler looks ahead the input stream, and if it sees the
corruption is local, it lets conversion process to continue by
ignoring the illegal sequence, but if it finds out the following
sequence is totally garbage, it raises an error.

If a port does conversion, however, implementing such a
look ahead mechanism adds large complexity to the port
internals.

4.3 Round-trip problem

Round-trip problem is that when you convert a character
from CES A to CES B, then convert back to CES A, you
get a different character. This appends because conversion
between CES A and CES B are not 1-to-1 mapping.

To make matter worse, the mapping is often ill-defined, so
the same program may exhibit different behavior among im-
plementations. Sometimes the mapping tables are just dif-
ferent. Sometimes one implementation doesn’t define map-
ping of the character between CES A and CES B, and the
application uses the handler mechanism of undefined se-
quence described above to introduce a substitution char-
acter. If you port that program to another implementation
that does define the mapping, you suddenly get a different
behavior.

This is not a rare problem. Indeed, it always happens when
you’re writing applications in multilingual environment.

One way to avoid the risk of this problem is to avoid conver-
sion from the first place—use the same internal encoding as
the supposed external encoding. It is not practical to sup-
port internal encodings for every possible external encoding,

but it is often the case that you know the primary encodings
used in the production environment. The implementation
may provide a run-time flag that switches the internal en-
coding, or provide different binaries compiled with different
switches.

When implementing a conversion routine, it is tempting to
choose one CES as a “pivot” CES, and convert any incoming
CES to the pivot, then convert it to the outgoing CES. How-
ever, it isn’t necessarily work for all combinations. Some-
times you need to use different pivot CES.

4.4 Code guessing

Another common problem with multiple CES’s is that you
always receive a data whose encoding is unknown, so you
have to guess its CES.

It is an ill-defined problem. Many CES’s use code ranges
that overlap each other, so a byte sequence can often be
totally valid character sequences of multiple CES’s.

So the perfect guess can’t be achieved. You have to use
whatever clues available at your hand. If you know the
natural language the content is written in, it greatly reduces
the candidate CES’s. In practice, it is often the case.

A naive algorithm looks for a characteristic byte sequence
that happens only in one of the candidate CES’s. For ex-
ample, if you know the data is either in one of ISO-2022-JP,
Shift_JIS or EUC-JP (in JISX0201 and JISX0208), you can
use something like the following logic[5] (the logic is simpli-
fied here for concise explanation).

e If you see escape sequences like 1Big ‘$’ ‘B’, it is ISO-
2022-JP.

e If you see code between 8116 to 8D16 or 9016 to 9F16, Or
Al:6 to DF16 followed by 4016 to 9F16, or EO16 to EFi6
followed by 4016 to AOss, it is Shift_JIS.

e If you see code between FOi6 to FE16, or Aljg to DFyg
followed by FOi6 to FEig, or EO1s to EFig followed by
FDig or FEi¢, it is EUC-JP.

Unfortunately, if you have a newer CES that tends to spread
to wider code area, and/or you have more candidate CES’s,
this naive deterministic approach easily falls to unusable.
For example, simply using the newer standard JISX0213:2000,
which adds a lot more code points, and adding UTF-8 to
the candidate CES’s, the above approach can’t determine
the code for large part of valid Japanese text.

Better approach is to use some kind of probabilistic state
machine. Sensible text in the natural language is a small
part of possible combination of all the characters, so the
statistical approach is likely to work in most cases. It is still
also difficult, though, if the input data is very small (it often
happens when processing the web form input in cgi scripts).

From the language implementor’s view, note the two facts:
First, the guessing routine requires set of candidate CES’s.
That means it can’t be totally hidden “under the hood”

of the binary representation layer in figure 1, but requires
some input from the text processing layer of the application.
Secondly, in order to implement this in the language, you
need a mechanism to manipulate binary chunk of data, and
attach it to the port as a buffer if you use a port to do real
conversion afterwords.

S. IMPLEMENTATION EXAMPLE: GAUCHE

In this section, we describe how Gauche implements multi-
byte string natively, trying to keep efficiency as much as
possible, and also what we learned from it.

5.1 String objects

Gauche’s string object consists of an anchor object and the
backing storage. The body of multibyte string is stored in
the backing storage, and the anchor object has the following
slots:

e [ength, the number of characters in it
e gize, the number of bytes it occupies

e pointer to the backing storage

Having both length and size have several pleasant proper-
ties. For example, it is easy to test whether the string con-
tains only single-byte characters or not. If length = size,
we can use O(1) access. So, if most of the strings the ap-
plication deals with are in ASCII, there’s little overhead.
Operations such as string concatenation and string index
boundary check can be done easily as well. For Scheme
level, Gauche has string-size procedure that returns the
size of the string in bytes.

Strings are managed by copy-on-write policy; whenever a
string is mutated, a fresh backing storage is allocated and
the original string is copied, except the altered part is filled
by the new character.

This allows us to share a backing storage by more than one
strings; for example, substring allocates only the anchor
object and points into the original string.

Note that it eliminates the need of indexed access when you
have a structure like suffix array. Instead of having a string
and array of indexes, you can have just an array of strings
that actually share the back-end storage.

The internal encoding can be changed at compile-time.

So far this strategy seems working reasonably. The per-
formance bottleneck doesn’t usually come from multibyte
string, but from elsewhere, like port locking overhead or a
poorly implemented stack-overflow handler. There are cases
that the third-party library runs slow, and we find it uses
string-set! extensively to do the “buffering”. Usually
rewriting it by using SRFI-6 string ports yields cleaner code
and better performance.

5.2 Character objects

Gauche’s character object is just like a small integer packed
in a word with the tag. Gauche reserves 29bits to represent
a character on 32bits/word architecture.

In the current design, a character is converted to a “packed”
format when read from multibyte string. That is, if a char-
acter in a string is represented by a UTF-8 multibyte se-
quence E716 AE16 9716, string-ref converts it to a UCS-4
format 7B9716. When it is stored in a string, the character
is unpacked to a UTF-8 sequence.

It turned out that such a conversion have non negligible over-
head, especially the packing/unpacking operation is rather
complex in Unicode. (EUC-JP or Shift_JIS has much more
simple operation, which is just shift and add).

Since the bitpattern in a character object doesn’t matter
to outside world, we’re planning to switch to a simple shift
and add packing even for Unicode. Maximum code position
in Unicode in utf-8 is F4;1¢ 8F16 BF1¢ BF16, but we can just
drop top 3 bits by left shift, and recover them by arithmetic
right shift (because in 4 octet format, the first byte range is
between FO16 and Féi6).

5.3 Scanning and matching

Gauche provides a built-in string search function (string-scan

and string-split) and regular-expression matching engine,
which implement optimization strategies described in “Multi-
byte string” section above. Built-in regular expression com-
piler takes multibyte POSIX-style regular expression de-
scription and produces an NFA that works on byte stream”.
Therefore, there is little penalty of using multibyte internal
encodings.

An important feature of those native searching routines are
that they can return matched substring directly instead of
the index to point the match. Since the underlying rou-
tine knows exact location of match in the string, returning
substring bypasses O(n) indexing.

For example, the regular-expression matcher returns an opaque

match object, instead of explicit list of indexes. The match
object actually keeps the pointer to the backing storage, so
extracting matched substring is much faster than extracting
indexes and calling substring. In practice, you hardly use
matched indexes other than passing them to substring, so
such a shortcut is indeed an advantage.

5.4 String iterator

We found that a string port abstraction as in SRFI-6 is
sometimes not enough to implement procedures of SRFI-13
efficiently. The features SRFI-6 string port lacks are the
ability to retrieve efficiently the rest of the content of input
string port, and the ability to iterate a string in reverse
order.

We introduced a low-level string iterator object called string
pointers, which keeps the string object and a direct pointer
into the backing storage.

"The regexp engine cares about “character” only when it
sees a character range expression that contains multibyte
characters.

However, we have a feeling that introducing such an ad-hoc
object is awkward. Most of the function of string pointer
can be abstracted by adding utility API for string ports.

5.5 Input and output

We implemented CES conversion in the port. Actually, the
conversion port works as if a kind of filter—it takes a source
port (when it is an input port) or a destination port (when
it is an output port) at construction time. If it is an input
port, the conversion port reads data from the original port,
and returns a converted result to the caller. If it is an output
port, the conversion port takes a data from the output pro-
cedures, then push out the converted result to the original
output port.

The behavior of “switching the encoding” described in the
CES conversion problems can be realized by wrapping the
original port by appropriate conversion port after deciding
what the external encoding is.

Gauche’s port also supports binary I/0, and allows users to
mix binary I/O and character I/O. To support it, a port has
a small scratch buffer that is used to decompose or build
multibyte character when required. For example, suppose
you peek one character, then read one byte. The peeked
character is stored in the scratch buffer, and next read-byte
retrieves one byte from the buffer.

The mechanism of adding handlers for undefined or illegal
byte sequences is not implemented yet, but there are enough
requests to make us implement it pretty soon.

5.6 Byte strings

When you are working in low-level stuff, sometimes you need
to construct a string from bit-level representations. Some-
times you might even deal with a string that is not a valid
multibyte string in the internal encoding. In order to do so,
we actually have two types of strings, one is normal char-
acter string (simply referred as a string) and the other is a
byte string.

We introduced a byte string in very early stage, in order to
represent a state when internal routines created an incom-
plete multibyte string.

However, now we are not certain if we really need it. In order
to play with bits, we have SRFI-4 vectors. Gauche provides
string->u8vector and alike, to extract binary representa-
tion of the string as a SRFI-4 vector, and pack it back to a
string. And having two kind of strings is a source of confu-
sion.

There are still an issue to solve: we have string ports, and
we have binary I/0. What if we output a byte sequence to
an output string port that doesn’t create a legal multibyte
string?

6. TOWARD PORTABLE STRING API

Scheme leaves lots of implementation details to the language
implementors, and we think it is a good thing. You need a
different strategy to solve different problems.

However, it will be useful to have a set of string APIs that
abstract underlying representations enough so that imple-
mentations can provide optimized versions.

6.1 Bad habits

These are some Scheme idioms that make some assumptions
in the underlying string implementation, therefore may not
work well on some implementations.

6.1.1 Using string as a buffer

Allocating a string and filling it by string-set! is a bad
idea. It behaves poorly in multibyte implementations, and
even in wide-character implementations, every string-set!
may involve boundary check and/or trigger a write barrier.

Output string port can be much easier to use, and gives lots
of optimization opportunity for implementors. For func-
tionally minded, SRFI-13’s string constructor should give
cleaner model.

The only possibility that you ever need string-set! to
construct a string is somehow you need to fill it in non-
sequential order. If the algorithm requires it somehow, you
can go with a vector and converts it to a string.

6.1.2 Using string as a byte vector

Sometimes people think a vector take too much space (a
word per each item) and use a string as a sort of byte vector
(a byte per each item). It was also the way to pretend doing
binary I/O in Scheme. It promptly breaks when the un-
derlying implementation starts supporting a large character
set. We have SRFI-4 now.

We also feel that stopping this usage eliminates another
source of string-set!.

6.1.3 Indexed access

If you access a string sequentially, string ports or SRFI-
13 mapping functions usually gives cleaner code than using
indexed access.

If the algorithm absolutely requires random access in a string,
you may want to consider using a vector instead.

6.2 Useful additional APIs
6.2.1 Ports

We need at least read-byte and write-byte to distinguish
binary I/O from character I/O. For the sake of efficiency,
some sort of block I/O will be also handy. We can use a
SRFI-4 vector as the buffer to be used in such block I/0O.

Strictly speaking, we also need byte-ready? as a binary
version of char-ready?, since char-ready? might need to
look ahead more than one bytes.

The semantics of mixing binary I/O and character I/O in a

port can be complicated, but we can leave it to the imple-
mentors.

6.2.2 String ports

Two auxiliary APIs will be useful. One to take the content
remaining in the input string port as a string, and the other
creates an input string that traverses the given string in
reverse order. Those APIs can easily be written in Scheme,
but the implementors can provide optimized version.

6.2.3 Opaque string pointer

It is useful not to specify what is returned from string search-
ing functions. Instead it can be an object p, which can be
used to retrieve a substring of the original string s, when
passed to a substring extraction function with s. For exam-
ple, we could have a function extract-after which returns a
substring after p in s, when it is called like (eztract-after s
p.

On implementations with O(1) access-time string, p can be
just an integer, and eztract-after is simply string-drop. On
multibyte implementations, p can be an object that has a
pointer into the middle of s.

Alternatively, we could just extend the existing API of substring

and SRFI-13 strings so that they accept this opaque string
pointer in place of index.

6.2.4 Manipulating binary representation

There has to be a way for programmers to work on lower-
level representation of a string. So that he/she can write
CES conversion routine and CES guessing routine, for ex-
ample.

It is important that the “view” of binary representation
should differ between wide-character and multibyte string
format. For wide-character string, the binary view would
be an array of bit-vectors (which can be an integer), where
each bit-vector is at least as wide as the character’s internal
representation is. On the other hand, multibyte string’s view
would be just an array of bytes. For portability, the former
can be u32vector and the latter can be u8vector, i.e. we’ll
have string->u32vector and u32vector->string, for wide
characters, and string->u8vector, and u8vector->string
for multibyte strings. The implementations can provide
both for compatibility; converting from one representation
to another is easy.

Note that if the implementation uses “fat character” repre-
sentation, whole idea of binary representation becomes irrel-
evant. So this APIs don’t really aim at perfect portability,
but gives some common ground to hack into internals of
strings.

6.2.5 Code point and character

integer->char and char->integer don’t specify concrete
mapping between integers and characters. Obviously, some-
thing like ucs->char and char->ucs® can be introduced for
handy conversion between a character and a portable inte-
ger code point. However, ucs->char and char->ucs doesn’t
always work.

e A single Unicode code point may be mapped to a se-
quence of characters. This is crucial to support XML’s

8The prefix ‘ucs’ s SRFI-14’s

ucs-range—>char-set.

taken from

character entity reference on the Scheme implementa-
tion that doesn’t yet support full Unicode characters,
for example.

The entity reference ௢ may be expanded to a
list equivalent to (map integer->char °’ (#xe3 #x81
#x82)), for the implementation that just have one-byte
per character string to pretend it supports UTF-8.

The entity reference ⠾ may be expanded to a list

equivalent to (map integer->char ’ (#xd800 #xdf02)),

for the implementation that only supports UTF-16
and requires a surrogate pair to represent the speci-
fied character.

e A single Scheme character may be mapped to a se-
quence of Unicode code points. For example, a charac-

ter of code A4F7,¢ in EUC-JP encoding of JISX(0213:2000

doesn’t have a corresponding character in Unicode,
and it has to be represented by one Unicode charac-
ter with one Unicode combining character, U+304B and
U+309A.

We can have ucs->char-list and char->ucs-1list, respec-
tively, to absorb this difference.

We may also need the reverse functions of those, but the
context where the reverse functions are called will depend
on implementations. That is, an implementation that uses
one-byte per character and doesn’t support UTF-8 may need
to call the reverse function with a list of three characters,
whose internal code points are #xe3 #x81 and #x82, in order
to produce a Unicode code point #3042, while an imple-
mentation that fully supports UCS-4 can just pass a single
character U+3042. So, when calling the reverse functions,
the programmer has to code explicitly in implementation-
dependent way.

7. CONCLUSION

We have discussed various aspects of supporting a large
character set in Scheme. First we modeled the architecture
of large character set support, and considered the extent
that the programming language needs to provide. Then
we compare advantages and disadvantages of two major
formats of internal encodings, namely wide-character and
multibyte strings. The traditional naive “array of charac-
ters” model of string strongly suggests wide-character string
is more straightforward, but we show there are various tech-
niques that can make multibyte strings a feasible choice.
We also discussed pitfalls of another big source of problems,
CES conversion. We then showed how we realized multibyte
string in our Scheme implementation, Gauche, and reflected
on our design choices. Finally, we made some suggestions for
Scheme programmers and implementors in order to write a
portable programs that perform well independent from the
internal encoding.

The issue of large character set support in a programming
language is a part of internationalization (i18n) and mul-
tilingualization (m17n) efforts, which have been discussed
for over a few decades. However, it seems that somehow
the discussion on this issue tends to remain local within the
community of a particular language, and tends to be scat-
tered in mailing list archives and web articles.

By this paper, we aimed at consolidating such previous ex-
periences, so that this paper can serve a reference and a
starting point for those who are interested in this issue. The
fact that Scheme has lots of implementations makes it ideal
to try out different ideas.

As the future work, we are planning to do quantitative com-
parison between wide-character and multibyte strings, using
application programs written in Gauche and being used in
the production environment.

8. REFERENCES
[1] William D Clinger, SRFI-6: Basic String Ports, In
Scheme Request for Implementation,
http://srfi.schemers.org/srfi-6/ .

2] Richard Gillam, Adding internationalization support
to the base standard for JavaScript: Lessons learned
in internationalizing the ECMAScript standard, IBM
developerWorks, September 1999,
http://www-106.ibm.com/developerworks/library/
internationalization-support

[3] ISO/IEC 2022:1994 : Information technology —
Character code structure and extension techniques.

[4] R. Kelsey, W. Clinger, J. Rees (eds.), Revised® Report
on the Algorithmic Language Scheme, ACM
SIGPLAN Notices, 33(9), September, 1998.

[5] Ken Lunde, CJKV Information Processing, O’Reilly &
Associates, Inc, 1999.

[6] MORO Shigeki, Software Review: CHISE Project, in
Journal of Japan Association for East Asian Text
Processing (JAET) No. 3, October 2002 (in Japanese).

[7] Olin Shivers, SRFI-13: String Libraries, In Scheme
Request for Implementation,
http://srfi.schemers.org/srfi-13/ .

[8] MORIOKA Tomohiko, CHISE project—beyond the
UTF-2000, m17n2001: the Fifth International
Symposium on Multilingual Information Processing
and Open Source Software, 2001.

[9] Unicode Consortium, Unicode Standard, Version
4.0.0, defined by: The Unicode Standard, Version 4.0,
Reading, MA, Addison-Wesley, 2003. ISBN
0-321-18578-1,
http://www.unicode.org/versions/Unicode4.0.0/

[10] Unicode Consortium, Unicode Technical Standard
#10: Unicode Collation Algorithm,
http://www.unicode.org/unicode/reports/trio0/,
2002.

[11] Unicode Consortium, Unicode Standard Annex #29:
Text Boundaries,
http://www.unicode.org/unicode/reports/tr29/ .

