Gluing Things Together -
Scheme in the Real-time CG Content Production

Shiro Kawai*
Square USA Inc.

Abstract

Cutting-edge 3D real-time rendering is where programmers
rack their brains to feed more instructions to CPU or trans-
fer more data on the bus within each frame, and dynamic
languages seem to have no place there.

However, there is another hidden cost which is growing
rapidly as the quality and complexity of rendered images get
higher—the cost of content creation.

At SIGGRAPH 2000 and 2001, we, Square USA R&D team
showed real-time rendering of scenes from full computer-
generated movie “Final Fantasy: The Spirits Within”. Al-
though we used the most advanced rendering hardware at
that time, such as Sony Computer Entertainment’s GSCube
parallel rendering engine and nVidia’s Quadro DCC chip, we
had to spend lots of time to tune data to achieve the maxi-
mum image quality.

We found it tremendous help to have an embedded Scheme
interpreter in real-time rendering engine. Scheme could lay
out the data on the memory, inspect the state of the engine,
and handle user interactions and allow data manipulation
over the network, without affecting rendering performance.
Scheme representation of the scene structure worked nicely
for the last-minute tuning (lots of Emacs works, in fact).

1 Introduction

It is not a news for Lisp programmers that Lisp is used in
the interactive computer graphics. Actually, Lisp used to be
the language to do graphics. There were various reasons for
it, but we think one of the reasons was that dealing with the
data structure in computer graphics is basically tweaking a
directed graph dynamically, and Lisp was very good to deal
with graph structure at run time.

However, real-time interactive computer graphics are con-
stantly facing the limit of hardware due to ever increasing
requirement of pushing more data to the graphics hardware,
and such languages that the programmers can have precise
control over what’s on the memory and in the instruction
stream are much preferred—so C and C++ have dominated
the field. The dynamic languages tend to bring unpredictabil-
ity into the tightly-tuned engine and are frowned away by
many programmers. (Actually, some game programmers

Now at Scheme Arts, L.L.C. shiro@schemearts.com

even avoided C++ until recently, because it is prone to in-
troduce unexpected pointer indirection and hidden fields in
the data structure).

Nevertheless, tweaking the parameters and structures in the
rendered scene at run time is inevitable during the produc-
tion stage. People deal with it starting from “run-time con-
figuration file” that sets some parameters at the startup. It is
natural that such configuration file syntax evolves to a sim-
ple command language, then to a full-fledged programming
language. Square Co., the parent company of Square USA,
has been using in-house specialized scripting languages to
describe game events for long time. Recently there are some
attempts to embed full-feature language, such as Python[1],
or Lisp[2], in the game engine.

Square USA R&D Team had been developing an in-house
real-time rendering engine in a project called Dancer, and
we adopted Scheme as an embedded scripting language. The
engine and scripting features were tested in production for
“Final Fantasy in Real Time” demonstration in SIGGRAPH
2000 and 2001 exhibition. The demonstration showed real-
time rendering of a sequence taken from a full-CG Movie in
photo-realistic quality, and that made us face some nontrivial
challenges[3].

This paper describes our experience in the production of
those demonstrations, and how we addressed the issues using
Scheme as a glue language.

In the next section we’ll give an overview of the Dancer
Project in Square USA. In the following sections we describe
the implementation details of the embedded Scheme engine,
the problems we faced during the production of the demon-
stration, and how we used Scheme to address those issues.
Then we summarize our experience, and conclude the paper
by the future direction of real-time scripting.

2 The Dancer Project

The Dancer Project is an in-house development project in
Square USA, aiming at building a high-quality real-time 3D
rendering and animation engine that took advantage of ad-
vanced graphical hardware as much as possible. It started in
1999, when Sony Computer Entertainment (SCE) revealed
PlayStation 2 (PS2) specification. The engine first targeted
at PS2, as well as standard OpenGL, then the support for
DirectX and nVidia’s OpenGL extensions were added.

It was used for technical demonstration titled “Final Fan-
tasy in Real Time” at SIGGRAPH 2000 and 2001 exhibi-
tions, showing a scene from the movie “Final Fantasy: The
Spirits Within” rendered in real time, on SCE’s GSCube par-
allel rendering engine (in 2000) and nVidia’s Quadro DCC
graphics card (in 2001). Dancer was also used for a preview
tool to support the production of “Final Fantasy: The Spirits
Within” and another short animation. A part of the Dancer
library was used in a console game title as well. (But the
latter applications didn’t use the Scheme engine.)

The Dancer engine was implemented mostly in C, with some
assembly language code. Performance and predictable mem-
ory consumption at run time were the highest priority. The
use of C++ was rejected by the potential users of the library
since it didn’t fit in their production pipeline.

One of the characteristics of the Dancer engine was its mod-
ular architecture. It consisted of mostly independent, modu-
lar libraries, and the user could take the features they needed
for their application. Dancer had its own data structure, but
it didn’t force the user’s code to use the Dancer structures
which might not fit in the internal structure of the applica-
tion. Instead, the Dancer API could take minimal structures,
such as a pointer to an array of floats.

For example, the deformer module took pointers to the
source and destination float arrays that represented vertex po-
sitions, and updated the destination float array every frame
according to the settings. The hierarchical transformation
module took pointers to the 4x4 matrices and updated them
according to the transformation hierarchy. The rendering
module used the shape structure that took a pointer to the
vertex arrays which were an array of floats. They could
be used together to create a complete animation engine, but
each modules could be plugged-in to user’s application by
just passing pointers.

3 The Scripting Engine

The Dancer’s scripting engine had to fit this framework. It
had to work as a pure “add-on” module, that is, adding extra
data field (such as tag bits) to the Dancer data structure or
interfering with application’s memory management were not
the option.

We started with STk! Scheme interpreter, for embedding it to
other applications was relatively easy, and we had been using
it for various in-house tools, including embedded Scheme

plug-in for Maya?.

First, due to the limitation of memory space (especially of
PlayStation 2), we stripped unnecessary features:

e Only fixnums and flonums were used for numbers (no
bignums).

e Flonums used floats instead of doubles.

e Some error checks were omitted.

e Continuations worked upward-only (just setjmp and
longjmp).

1http://kaolin.unice.fr/stk/
thtp://www.aliaswavefront.com/en/products/maya/

e Dropped support of module system, promise, eval-
hook, autoload, virtual ports, FFI, POSIX functions, dy-
namic loading, and unix processes.

PlayStation 2 and GSCube runtime had limited support of
system functions, so some of them were omitted and some
of them had to be emulated (e.g. we built a buffered file
I/0 on top of PlayStation 2’s file transfer protocol via host
machine).

Memory management was tricky. Dancer data structure
might point in the middle of other data structure, as, for ex-
ample, a hierarchical transform node pointed to a matrix in-
side another object. Lacking precise type information and
layout information of each object, there was no way for GC
to know which objects were alive.

However, as the real-time rendering engine, the allocation
pattern of Dancer data was usually very specific. Almost
all data was laid out on memory during initialization stage,
and the allocation during real-time playback was generally
avoided. So we decided to make the Scheme engine not to
reclaim Dancer data structure.

The scripting engine used its own memory allocator to allo-
cate Scheme object from the designated memory space. The
objects from the space was managed by GC. The Dancer ob-
jects were allocated by application’s memory allocator. The
Dancer objects allocator could be called from Scheme to ob-
tain the pointer of new Dancer objects as a foreign pointer.
Scheme could also call the explicit deallocator of Dancer ob-
jects, although it was the responsibility of the script program-
mer to make sure the Dancer scene graph would be consis-
tent after deallocation of some objects. The explicit deal-
location was hardly used, since it was always easy to flush
entire memory and reload the data into a fresh state.

The Scheme binding to Dancer library API was generated
semi-automatically from hand-written API description for-
mat. The Scheme binding was fairly low-level, in the sense
that it was allowed to deal with C pointers within Scheme.
Scheme code could take the address of a field of Dancer ob-
ject and put it to a field of another Dancer object, for exam-
ple. It was accepted well by the programmers, since they
could treat Dancer structures in the same way as in C.

The Scheme engine also had a couple of important features,
one was Ul binding and the other was a networked listener.
The UI binding allowed Scheme code to construct menus, to
connect keyboard and mouse events to Dancer objects, and
to register callbacks to such events. Connecting events to
Dancer objects means to pass the UI driver the pointer of a
field of some Dancer object and ask the driver to update the
field whenever the event occurs. The important fact here was
that no Scheme code would run when actual events occurred,
thus no allocation and no GC would be required during real-
time playback. Callback feature could be used if we needed
more than such a simple connection, mainly to implement
the features useful during authoring stage, when a pause of
GC was a much less problem. (In fact, it turned out that
the pause of GC was never be a problem; we hardly noticed
it. The pause caused by texture swapping was much more
problematic).

The networked listener was a read-eval-print loop that lis-

tened network connection. It used sockets on PC/nVidia
platform, and a special protocol on PlayStation and GSCube
platform. Initially we implemented it for the last resort of
run-time tweaking, when we needed to adjust some param-
eters without stopping the playback. However, it turned out
much more useful when we connected the Dancer playback
engine and the authoring software. We’ll explain it later.

4 The Production

We experienced two production process using Dancer and
the scripting engine. The first one was for the exhibition of
SIGGRAPH 2000, where we played back a sequence (called
“BOA”) taken from the “Final Fantasy” movie which ran
about a minute and included a single character. It ran on
SCE’s GSCube parallel rendering engine, which essentially
had 16 PlayStation 2’s and an image composition hardware
in it. The second one was for the exhibition of SIGGRAPH
2001, where we played back a sequence called “SLA”, which
ran about four minutes and had two characters. In both
demonstrations, the audience could control the camera and
the lights interactively while playing back the animation. In
the 2001 demonstration the audience also could adjust var-
ious parameters, such as object colors and transparencies,
interactively.

We had the movie data, but they were extremely large and
complicated and there was no way to render them in real-
time as they were. Thus the production was mainly to tune
and reconstruct the data into a suitable form for real-time
playback. It was not just a matter of reducing the amount of
the data—sometimes the fundamental structure needed to be
changed, such as animation setup, and sometimes the movie
data was totally irrelevant and needed to be redesigned, such
as lighting setup. The redesigning involved artistic decisions,
and we worked with several artists to achieve the goal. The
actual process was described in detail in [3].

There were some issues we wanted to address by scripting.

Integration of the data: The scene consisted of large num-
ber of data from various sources. For example, a char-
acter model was exported from Maya, and the texture
was retouched by Photoshop. Animation data was also
exported from Maya but it was chopped for each shot
and each individual channels, and had to be concate-
nated somehow. The lighting data needed to be recre-
ated in terms of the Dancer’s rendering engine. We
needed some way to integrate them, so that they form
a scene graph in the Dancer’s memory.

Shortening turn-around time: Traditional workflow for
real-time content production is to iterate (1) exporting
data from authoring tool (Maya), (2) loading the data
into the target environment, and (3) checking the ap-
pearance and fixing the original data. It does not work
well as the amount of data grows, for the exporting
takes more and more time. In our production, the ex-
treme case was the facial animation of the main char-
acter, which took 8 hours to export3. It was crucial to

3This was because what we needed was not the source of the
animation, which was several tens of animated real numbers, but
the preprocessed intermediate data, which was animating several
thousands of vertexes.

have the means of tweaking the data and seeing its ef-
fect immediately on the target environment, instead of
repeating the above time-consuming iteration.

Supporting trial-and-error: When you want to achieve
certain visual appearance, it is not uncommon that there
are two approaches, one that puts more work on de-
signer side to prepare data, or another that emphasize
more on programmer’s work to deal with the data. The
cost and effect of these approaches may vary greatly,
and trial-and-error is inevitable in the production. Nev-
ertheless, the tight schedule of the production usually
doesn’t allow enough room for trials. It would have
been a great help if we had the means to try out certain
programmatic effects quickly, instead of waiting a day
or two for a programmer to write up the complete code
to do it.

5 The Roles of Scheme

We used Scheme in various places throughout the produc-
tion, but it could be summarized as the following several
topics.

5.1 Scheme as a file format

To address data integration problem, we just decided to use
Scheme program as the integrated file format. So loading
data files was just evaluating Scheme scripts.

We had a special binary format for individual data files such
as geometry data and animation data. Scheme had API bind-
ing to read those binary files. After placing those binary data
in the memory, the Scheme script was responsible to inter-
connect pointers of the data structures to construct the scene
graph.

We wrote an exporter plugin in Maya that emitted binary
files and a Scheme program to load and interconnect them.
Not all data in the original scene were exported as binary; for
example, shader and material information was exported as a
Scheme program that would construct a shader node and set
up the parameters.

Having a Scheme program as a file format gave us lots of
flexibility. Splitting the data hierarchy into manageable size
was trivial, for we could just ‘load’ the subtree of the data.
Treating animation data was a bit more involved, for the orig-
inal data was prepared for each shot, having the time frame
beginning of the shot. The script had to load the anima-
tion data of shots in the sequence, then offset them accord-
ingly within the sequence. Furthermore, simple concatena-
tion of the animation data wouldn’t work, since the interpo-
lation around a shot boundary would yield wrong result. So
we used a special Dancer structure called a “switch connec-
tor”, which took input from animation channels of all shots,
and one “control” input that selects the active shot, then out-
put the selected data into the given pointer. A hand-written
Scheme script took care of creating required switch connec-
tors and wiring them.

One example of such flexibility was the ability of parame-
terization. It was often required to play back just a certain
shot, or even a part of the shot, in order to tune some data

(define *shot-lengths* ' ((3 84) (4 402) (4a 48) (5

(7 113) (8 72) (9 120)
(13 368) (15 86) (16 128
o))

(define *shot-data*
(let ((frame 1))
(map (lambda (len)

36) (6 74)
(10 217) (12 120)
(18 275) (18a 72)

(let ((result (list (car len) frame (+ frame (fps-frame len) -1))))

(set! frame (+ frame (fps-frame len)))
result))
shot-lengths)))

(define (get-motions shots file-format-string)
(define (read-channel file)

(sqmo-channel-read (sg-complete-filename file)))

(map (lambda (shot-data)
(if (memg shot-data shots)
(create-motion-channel

(read-channel (format #f file-format-string
(shot-number shot-data)))

(first-frame shot-data))
#£))
shot-data))

Figure 1. Excerpt from the integration script, showing the part that defines shots in the sequence
and then loads required animation channels (“motions’’). The variable *shot-lengths* keeps assoc-
list of shot name and its length. Changing the length of the shots or omitting certain shots were as
easy as just changing the value of *shot-lengths*, which helped us greatly during data tuning and

debugging stage.

or debug some defects. We had a single location that defines
shots and their lengths (see figure 1), and changing the shot
to play back was just a matter of changing the value of that
definition.

It was also important that we had an ability to patch things
procedurally; if we found some bug in the rendering engine
that had a problem with certain data, we could add a Scheme
function to the data file that scanned the data hierarchy and
rewrote the problematic data, so that the artists could keep
working without waiting the bug to be fixed.

5.2 Scheme as a debugging tool

Debugging was especially a problem in GSCube project.
The target program ran on 16 CPUs in GSCube, while you
could only login to the host processor that controls those
CPUs. A remote debugger was provided but difficult to use,
and we ended up mostly using print statement to monitor the
state of CPUs.

Scripts came handy here. It didn’t require recompilation, of
course, but the real power came from the ability of register-
ing callbacks to events, including shot boundaries or frame
boundaries. So we could write a procedure, for example,
that were evaluated in each frame while frame count was in
a particular range and reported if the data was in supposed
range or not. Evaluating callbacks required some memory
allocation in the Scheme engine and might cause GC during
playback, so it could have a probe effect, but in practice we
didn’t have the problem. Besides, we could also set a call-
back to some button event to turn on and off the debug stub,
so that we could evaluate the probe effect itself.

Even in development on PC for SIGGRAPH 2001, where
we could invoke debugger as we needed, it was sometimes
useful to use a script to show certain values on the screen, for
example, so that we could monitor the data during playback.

We expected the network listener to be another powerful de-
bugging tool, but it wasn’t used very much for debugging.
It was probably because “inspect” feature of the listener was
poor, and it took lots of typing to reach the data you want
to investigate. We realized the power of interactive top-level
was not just from the fact that you could evaluate the ex-
pression interactively, but also from the rich supporting tools
such as inspectors, apropos, and history features. However,
the network listener turned out to be useful to construct au-
thoring environment, which we describe later.

5.3 Scheme for rapid prototyping

The demonstration Ul was a kind of last-minute hack, since
we were not sure how much we could show until very late in
the production. The UI was written in Scheme, which helped
a lot to tweak it until the last moment.

There were another incident that Scheme served as a handy
tool. Lighting of the scene had to be redone for the demon-
stration, since the movie’s lighting setting was not for real-
time rendering. The adjustment must have been done in
the Dancer’s rendering engine; the authoring tool (Maya)
couldn’t reproduce the exact image that Dancer produced.
So we quickly hacked a lighting tool on Dancer, which en-
abled an artist to change positions and parameters of several
lights while the scene was playing back. The tool could also
save and load the light settings. The tool features were en-
tirely written in Scheme, without modifying Dancer engine

code.

An artist worked on the tool and finished lighting of 20-
some shots within a couple of days. Considering that it had
taken many weeks to do lighting in the movie scenes, we
realized the power of real-time playback for authoring envi-
ronment. (This is not a fair comparison, though, since the
movie scenes involved a lot more light settings than just 6 to
8 hardware-rendered lights in the demo. Still, the artist men-
tioned that it was much easier to see the effects immediately,
instead of waiting an hour for the image to be rendered).

5.4 Scheme for authoring

The experience of lighting tool motivated us to proceed that
direction further. Although it wasn’t finished in time in the
production of the demonstrations, we later developed a pro-
totype system called “Laika”, which was an attempt to make
a fusion of authoring and playback environment.

The Laika authoring prototype consisted of an authoring
tool (Maya), and the Dancer playback engine (see figure
2). Maya had our in-house embedded Scheme plugin (called
“schemaya”), which monitored changes in the Maya scene
and propagated them to Dancer, via Dancer’s network lis-
tener.

Schemaya was also based on STk and could use STk’s object
system, STklos, which had CLOS-like MOP[4]. We wrote a
simple distributed object system on top of it. An object in
Maya side was defined as a “proxy”, which had slots marked
‘remote’ (see figure 3). Changes of the remote slots were
sent to Dancer side, and reflected promptly on the scene be-
ing played back. Proxy metaclass managed caching and op-
timizing the communication. The actual messages sent to
Dancer were simply a bunch of set! expressions, which
were evaluated by Dancer’s network listener.

An artist could change camera setting and lighting in Maya,
which would propagate to the Dancer’s rendering immedi-
ately. Besides, Laika could use Dancer engine to render mul-
tiple images while jittering camera and lights, then compose
them to create higher-quality images with nicer effects like
soft shadows and depth-of-field.

Unfortunately, Square USA shut down the studio before
“Laika” was used in the real production. However, we think
this technique should be used in the future production.

6 Experience

Thinking back our experience of two demonstration produc-
tions, we’d like to note several points.

S-expression was a win. It could be any structured format
with well-defined external representation, but I think
S-expression is the simplest form among other possi-

bilities. Reading and writing S-expression are trivial®,

It may be argued that the ease of parsing and generation is the
matter of library support; say, if we have XML parser and generator,
it would be just as easy as to deal with S-expr. Still I think S-
expression reader can be written much smaller than XML parser,
which is crucial if we embed it in the game engine.

and we wrote lots of small, throw-away Scheme scripts
to fix the data deficiencies, since re-exporting the data
from Maya was too expensive. Emacs has built-in sup-
port to deal with S-expressions, and the capability of
hand-editing data files was indispensable for the last-
minute crunch time.

Higher-order function was a win. This was a surprise for
us. We expected scripting engine needed just trivial
stuff, such as loops, conditionals, and function defini-
tions at most. However, the tweaking of data produced
lots of similar code, and some kind of parameterization
was handy for refactoring them. And the functional ab-
straction was, again, the simplest way to realize that.
For example, figure 4 shows an excerpt of the scene-
setup code that creates a “switch connector”” node which
feeds different animations for each shot from different
motion files. There were some variations of in types
of animated data (matrices, colors, etc.) and the fields,
so the connector creation function took two functions,
connector-builder and slot-accessor, to parame-
terize the construction.

GC was a problem. The speed of GC was not a big prob-
lem, since no memory allocation was done while the
tight rendering loop was running, so GC would never
run in the normal playback. (The menu UI and remote
evaluation could cause GC, but it was an acceptable
pause in the production period. It was possible to set
up the scene so that no allocation would be done during
the actual demo.)

The real problem was that existence of GC might force
a certain style of programming. If we had wanted to
GC not only the Scheme data but also the actual Dancer
structures, we would have had to ask the application that
uses Dancer to obey some restrictions, such as using
Dancer’s memory allocator or limiting the use of point-
ers so that they would be visible from GC. This would
severely limit the usefulness of Dancer, for the memory
management is one of the core part the potential appli-
cation writers would want to tune by themselves.

One possible way to address this might be to provide
several choices of allocators that works with GC. For
example, sometimes real-time rendering engine uses
simple first-in-last-out allocator, where the memory is
divided by free area and used area by a single pointer,
and a new object is allocated by just taking the required
chunk of memory from the top (or bottom) of the free
area and updating the dividing pointer. The objects
must be freed in the reverse order of allocation, or freed
all at once’, but such limitations are accepted for the
better performance. It would be nice if we have GC that
is aware of this type of allocator.

Limited memory space was a problem. We couldn’t keep
meta information such as the layout of Dancer struc-
tures and a catalog of instantiated objects in the target’s
memory, due to the limitation of memory space. It re-
duced the usefulness of interactive listener—we needed
to chase pointers by hand, looking at the source code,
to reach the object we needed to inspect, which was too
cumbersome.

SFreeing a chunk of data at once, in the end of a frame or a
scene, is often the case.

’ \

Windows PC

! SGI \
' ' Parameter Change ! :
+ Maya ' (Camera, Light, Material, + Dancer !
. : Transform) . '
. ' Commands (load object, etc) o Dancer !
E Schemaya | | | Embedded :
| ‘7‘~\\\\\:2?éctChangi———"_,,,fv Scheme :
' export load ' ‘
(via temporary file) C
Preview

Figure 2. The “Laika” authoring prototype.

(define-class <dancer-light-proxy> (<proxy>)
((id :init-keyword :id :accessor id-of)

jitter-angle :accessor jitter-angle-of :allocation :remote)
jitter-distance :accessor jitter-distance-of :allocation :remote)
phong raccessor phong-of :allocation :remote)
settings :accessor settings-of :allocation :virtual

:slot-ref (make-light-settings-getter)

:slot-set! (lambda (o v) #f))

(name raccessor name-of :initform #f :init-keyword :name)
(state raccessor state-of :allocation :remote)
(color :accessor color-of :allocation :remote)
(target :accessor target-of :allocation :remote)
(rotate :accessor rotate-of :allocation :remote)
(distance :accessor distance-of :allocation :remote)
(fov raccessor fov-of :allocation :remote)

(

(

(

(

)
:getter-builder make-light-proxy-getter
:setter-builder make-light-proxy-setter)

Figure 3. Definition of “remote’” object. Changes to the slots marked remote would propagate to the
other side and reflected in the scene being played back.

(define (create-switch-connector obj shots file-format-string
connector-builder slot-accessor)
(let* ((swc (connector-builder (list (slot-accessor obj))
(if (string? file-format-string)
(get-motions shots file-format-string)
file-format-string)

studio))
(inc (sgst-create-integer-connector

(sgco-switch-connector-get-current-source-ptr swc)

shot-step-motion
studio)))

(sgst-studio-add-updater-before *studio* *root* swc)
(sgst-studio-add-updater-before *studio* swc inc)

SWC

))

Figure 4. Using higher-order function for abstraction. The function create-switch-connector takes
two procedures, connector-builder and slot-accessor, that have information about the type and

location of the data to deal with.

On PC platforms this restriction could be removed, but
the special platforms such as a console game engine will
always have less memory than the PC at the same gen-
eration.

In the applications like Laika, it might be possible to
keep the meta-information in the host machine. We
could make the target machine report addresses of
newly allocated object to the host machine (or even
make host machine to emulate the allocator of the tar-
get machine), so that the host machine can keep a table
of names and pointers of allocated instances, instead of
letting the target machine do so. A special client pro-
gram running on the host machine can then use the in-
formation to help interactive listener, much like remote
debuggers do.

Power of abstraction must be advertised more. When
talking about the ideas of embedded Scheme, it is
common to get a reaction such as “Why do we need
that complicated stuff, such as higher-order functions?
Can’t we keep it simple, just using variables and
assignment command, for example?” The problem of
this idea is that eventually some kind of abstraction
would be required, and adding them in ad-hoc language
would be horrible. In fact, Scheme may be one of
the simplest form among the systems with the given
abstraction capability.

7 Future

As the graphics hardware gets faster and the audiences’ ex-
pectation to the real-time interactive graphics gets higher, the
amount and complexity of data the rendering engine has to
deal with will ever increase. It will be more important to
push the point of fine-tuning toward the target platform, oth-
erwise turn-around-time will be increased to the point being
prohibitive for production to do enough iterations.

The cost of having full-featured scripting language inside the
real-time rendering engine becomes smaller nowadays. We
expect it to be the mainstream. With clever GC and support-
ing tools, Scheme can be a good choice for it.

We also believe the fusion of authoring and playback envi-
ronment, not only in the consumer game production but also
in the high-end computer graphics. Such applications will be
required to deal with complex structure, spread out among
processors and changing dynamically at run time. Lisp is
still a good language for it.

Acknowledgments

The author would like to thank to Square Co., in Tokyo,
Japan, to give the permission to present this material in the
International Lisp Conference.

The author would also like to thank to ex-Square USA mem-
bers, who participated in the ambitious project to create
photo-realistic computer generated human animation. The
company was gone, but what we learned will live and spread,
pushing up the limit of this field.

8 References

[1] Bruce Dawson. Game Scripting in Python, in Proceed-
ings of Game Developers Conference 2002, March
2002.

[2] Stephen White. Postmortem: Naughty Dog’s Jak and
Daxter: Precursor Legacy, in Gamasutra July 2002,
http://www.gamasutra.com/features/20020710/white02.htm.

[3] Kaveh Kardan. Running A “Final Fantasy” Movie Se-
quence in Real Time, in Proceedings of Game Develop-
ers Conference 2002, March 2002.

[4] E. Gallesio. Stklos: A scheme object oriented system
dealing with the tk toolkit, In Proceedings of ICS Xhi-
bition’94, San Jose, CA, pages 63-71, 1994.

